Advertisement

Novel Insights/Translational Implication from the Emerging Biology of Melanoma

  • Antoni Ribas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1102)

Abstract

Melanoma is a main example of how applying advances in basic biology, pharmacology, and molecular diagnostics into the clinic results in unprecedented benefits to patients. After many years of lack of advances in the treatment of patients with metastatic melanoma, the advent of new therapies that block driver oncogenic signaling and modulate immune responses to cancer provided the first studies with a positive impact in overall survival (OS) of patients with advanced melanoma. The pace of progress in the treatment of this disease has been greatly accelerated by these initial breakthroughs, and it continues with new generation agents and combinatorial approaches.

Key words

BRAF CTLA4 PD-1 Immunotherapy Targeted therapy 

References

  1. 1.
    Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147PubMedCrossRefGoogle Scholar
  2. 2.
    Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346PubMedCrossRefGoogle Scholar
  3. 3.
    Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857PubMedCrossRefGoogle Scholar
  4. 4.
    Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457: 599–602PubMedCrossRefGoogle Scholar
  5. 5.
    Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T et al (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363:2191–2199PubMedCrossRefGoogle Scholar
  6. 6.
    Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D et al (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5:e120PubMedCrossRefGoogle Scholar
  7. 7.
    Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246PubMedCrossRefGoogle Scholar
  8. 8.
    Ribas A, Flaherty KT (2011) BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 8:426–433PubMedCrossRefGoogle Scholar
  9. 9.
    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819PubMedCrossRefGoogle Scholar
  10. 10.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  11. 11.
    Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714PubMedCrossRefGoogle Scholar
  12. 12.
    Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379:1893–1901PubMedCrossRefGoogle Scholar
  13. 13.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365PubMedCrossRefGoogle Scholar
  14. 14.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221PubMedCrossRefGoogle Scholar
  15. 15.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430PubMedCrossRefGoogle Scholar
  16. 16.
    Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215PubMedCrossRefGoogle Scholar
  17. 17.
    Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R et al (2012) RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 30:316–321PubMedCrossRefGoogle Scholar
  18. 18.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468: 973–977PubMedCrossRefGoogle Scholar
  19. 19.
    Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390PubMedCrossRefGoogle Scholar
  20. 20.
    Shi H, Moriceau G, Kong X, Koya RC, Nazarian R, Pupo G et al (2012) Sensitivity of B-RAF/MEK1 double-mutant melanomas to B-RAF inhibitors. Cancer Discov 2(5): 414–424PubMedCrossRefGoogle Scholar
  21. 21.
    Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC et al (2012) Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun 3:724PubMedCrossRefGoogle Scholar
  22. 22.
    Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504PubMedCrossRefGoogle Scholar
  23. 23.
    Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509PubMedCrossRefGoogle Scholar
  24. 24.
    Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695PubMedCrossRefGoogle Scholar
  25. 25.
    Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972PubMedCrossRefGoogle Scholar
  26. 26.
    Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29(22):3085–3096PubMedCrossRefGoogle Scholar
  27. 27.
    Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362PubMedCrossRefGoogle Scholar
  28. 28.
    Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114PubMedCrossRefGoogle Scholar
  29. 29.
    Smalley KS, Flaherty KT (2009) Integrating BRAF/MEK inhibitors into combination therapy for melanoma. Br J Cancer 100:431–435PubMedCrossRefGoogle Scholar
  30. 30.
    Lo RS (2012) Combinatorial therapies to overcome B-RAF inhibitor resistance in melanomas. Pharmacogenomics 13:125–128PubMedCrossRefGoogle Scholar
  31. 31.
    Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703PubMedCrossRefGoogle Scholar
  32. 32.
    Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339PubMedCrossRefGoogle Scholar
  33. 33.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedCrossRefGoogle Scholar
  34. 34.
    Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366(26): 2517–2519PubMedCrossRefGoogle Scholar
  35. 35.
    Agarwala SS, Ribas A (2010) Current experience with CTLA4-blocking monoclonal antibodies for the treatment of solid tumors. J Immunother 33:557–569PubMedCrossRefGoogle Scholar
  36. 36.
    Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA, Millham R et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23:8968–8977PubMedCrossRefGoogle Scholar
  37. 37.
    Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717PubMedCrossRefGoogle Scholar
  38. 38.
    O’Day SJ, Maio M, Chiarion-Sileni V, Gajewski TF, Pehamberger H, Bondarenko IN et al (2010) Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol 21:1712–1717PubMedCrossRefGoogle Scholar
  39. 39.
    Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B et al (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27:1075–1081PubMedCrossRefGoogle Scholar
  40. 40.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRefGoogle Scholar
  41. 41.
    Robert C, Thomas L, Bondarenko I, O’Day S, M DJ, Garbe C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedCrossRefGoogle Scholar
  42. 42.
    Ribas A, Kefford R, Marshall MA, Punt CJA, Haanen JB, Marmol M et al (2013) A phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 31(5):616–622PubMedCrossRefGoogle Scholar
  43. 43.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28: 3167–3175PubMedCrossRefGoogle Scholar
  44. 44.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366: 2455–2465PubMedCrossRefGoogle Scholar
  45. 45.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Antoni Ribas
    • 1
  1. 1.Division of Hematology-Oncology, Department of Medicine, Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesUSA

Personalised recommendations