Skip to main content

Selection of Recombinant Antibodies from Antibody Gene Libraries

  • Protocol
  • First Online:
Book cover Gene Function Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1101))

Abstract

Antibodies are indispensable detection reagents for research and diagnostics and represent the biggest class of biological therapeutics on the market. In vitro antibody selection systems offer many advantages over animal-based technologies because the whole selection process is independent of the in vivo immune response. In the last two decades antibody phage display has evolved to the most robust and widely used method and has already yielded thousands of antibodies. The selection of binders by phage display is also referred to as “panning” and based on the specific molecular interaction of antibody phage with an immobilized antigen thus allowing the enrichment and isolation of antigen-specific monoclonal binders from very large antibody gene libraries. Here, we give detailed protocols for the selection of recombinant antibody fragments from antibody gene libraries in microtiter plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du Pasquier L (1993) Phylogeny of B-cell development. Curr Opin Immunol 5:185–193

    Article  PubMed  CAS  Google Scholar 

  2. von Behring E, Kitasato S (1890) Über das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren. Dtsch Med Wochenschr 16:1113–1114

    Article  Google Scholar 

  3. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  4. Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299

    Article  PubMed  CAS  Google Scholar 

  5. Courtenay-Luck NS, Epenetos AA, Moore R, Larche M, Pectasides D, Dhokia B, Ritter MA (1986) Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res 46: 6489–6493

    PubMed  CAS  Google Scholar 

  6. Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR, Lonberg N (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851

    Article  PubMed  CAS  Google Scholar 

  7. Jakobovits A (1995) Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 6:561–566

    Article  PubMed  CAS  Google Scholar 

  8. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  PubMed  CAS  Google Scholar 

  9. Lonberg N, Huszar D (1995) Human antibodies from transgenic mice. Int Rev Immunol 13:65–93

    Article  PubMed  CAS  Google Scholar 

  10. Kay J, Matteson EL, Dasgupta B, Nash P, Durez P, Hall S, Hsia EC, Han J, Wagner C, Xu Z, Visvanathan S, Rahman MU (2008) Golimumab in patients with active rheumatoid arthritis despite treatment with methotrexate: a randomized, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 58:964–975

    Article  PubMed  CAS  Google Scholar 

  11. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6:279–286

    Article  PubMed  CAS  Google Scholar 

  12. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246: 1275–1281

    Article  PubMed  CAS  Google Scholar 

  13. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  14. Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982

    Article  PubMed  CAS  Google Scholar 

  15. Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153

    Article  PubMed  CAS  Google Scholar 

  16. Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352:624–628

    Article  PubMed  CAS  Google Scholar 

  17. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137

    Article  PubMed  CAS  Google Scholar 

  18. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597

    Article  PubMed  CAS  Google Scholar 

  19. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  PubMed  CAS  Google Scholar 

  20. Dübel S, Stoevesandt O, Taussig MJ, Hust M (2010) Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 28:333–339

    Article  PubMed  Google Scholar 

  21. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348

    Article  PubMed  CAS  Google Scholar 

  22. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490

    Article  PubMed  CAS  Google Scholar 

  23. Mazor Y, Van Blarcom T, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25:563–565

    Article  PubMed  CAS  Google Scholar 

  24. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147

    Article  PubMed  CAS  Google Scholar 

  25. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942

    Article  PubMed  CAS  Google Scholar 

  26. He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134

    Article  PubMed  CAS  Google Scholar 

  27. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94:12297–12302

    Article  PubMed  CAS  Google Scholar 

  28. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  PubMed  CAS  Google Scholar 

  29. Welschof M, Terness P, Kipriyanov SM, Stanescu D, Breitling F, Dörsam H, Dübel S, Little M, Opelz G (1997) The antigen-binding domain of a human IgG-anti-F(ab′)2 autoantibody. Proc Natl Acad Sci USA 94:1902–1907

    Article  PubMed  CAS  Google Scholar 

  30. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230

    Article  PubMed  Google Scholar 

  31. Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170

    Article  PubMed  CAS  Google Scholar 

  32. Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66

    Article  PubMed  Google Scholar 

  33. Mersmann M, Meier D, Mersmann J, Helmsing S, Nilsson P, Gräslund S, Structural Genomics Consortium, Colwill K, Hust M, Dübel S (2010) Towards proteome scale antibody selections using phage display. N Biotechnol 27:118–128

    Article  PubMed  CAS  Google Scholar 

  34. Meyer T, Stratmann-Selke J, Meens J, Schirrmann T, Gerlach GF, Frank R, Dübel S, Strutzberg-Minder K, Hust M (2011) Isolation of scFv fragments specific to OmpD of Salmonella Typhimurium. Vet Microbiol 147:162–169

    Article  PubMed  CAS  Google Scholar 

  35. Meyer T, Schirrmann T, Frenzel A, Miethe S, Stratmann-Selke J, Gerlach GF, Strutzberg-Minder K, Dübel S, Hust M (2012) Identification of immunogenic proteins and generation of antibodies against Salmonella Typhimurium using phage display. BMC Biotechnol 12:29

    Article  PubMed  CAS  Google Scholar 

  36. Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T, Gunzer M, Hust M, Dübel S (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS ONE 4:e6625

    Article  PubMed  Google Scholar 

  37. Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13:3245–3260

    PubMed  CAS  Google Scholar 

  38. Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776

    Article  PubMed  CAS  Google Scholar 

  39. Hayashi N, Welschof M, Zewe M, Braunagel M, Dübel S, Breitling F, Little M (1994) Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17:310, 312, 314–5

    PubMed  CAS  Google Scholar 

  40. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86

    Article  PubMed  CAS  Google Scholar 

  41. Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Nörenberg S, Stark Y, Kölln J, Popp A, Urlinger S, Enzelberger M (2011) HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413:261–278

    Article  PubMed  CAS  Google Scholar 

  42. Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200

    Article  PubMed  CAS  Google Scholar 

  43. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y-J, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song X, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  PubMed  CAS  Google Scholar 

  44. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AWC, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers Y-H, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  Google Scholar 

  45. Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M (2002) A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30:1083–1090

    Article  PubMed  CAS  Google Scholar 

  46. Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA-K, Persson A, Ottosson J, Wernérus H, Nilsson P, Lundberg E, Sivertsson A, Navani S, Wester K, Kampf C, Hober S, Pontén F, Uhlén M (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7:2019–2027

    Article  PubMed  CAS  Google Scholar 

  47. Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254

    Article  PubMed  CAS  Google Scholar 

  48. Taussig MJ, Stoevesandt O, Borrebaeck CAK, Bradbury AR, Cahill D, Cambillau C, de Daruvar A, Dübel S, Eichler J, Frank R, Gibson TJ, Gloriam D, Gold L, Herberg FW, Hermjakob H, Hoheisel JD, Joos TO, Kallioniemi O, Koegl M, Konthur Z, Korn B, Kremmer E, Krobitsch S, Landegren U, van der Maarel S, McCafferty J, Muyldermans S, Nygren P-A, Palcy S, Plückthun A, Polic B, Przybylski M, Saviranta P, Sawyer A, Sherman DJ, Skerra A, Templin M, Ueffing M, Uhlén M (2007) ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Methods 4:13–17

    Article  PubMed  CAS  Google Scholar 

  49. Wingren C, James P, Borrebaeck CAK (2009) Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Proteomics 9:1511–1517

    Article  PubMed  CAS  Google Scholar 

  50. Ershov P, Mezentsev Y, Gnedenko O, Mukha D, Yantsevich A, Britikov V, Kaluzhskiy L, Yablokov E, Molnar A, Ivanov A, Lisitsa A, Gilep A, Usanov S, Archakov A (2012) Protein interactomics based on direct molecular fishing on paramagnetic particles: experimental simulation and SPR validation. Proteomics 12:3295–3298

    Article  PubMed  CAS  Google Scholar 

  51. Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Böckelmann R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress AWM (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278

    Article  PubMed  CAS  Google Scholar 

  52. Schubert W, Bode M, Hillert R, Krusche A, Friedenberger M (2008) Toponomics and neurotoponomics: a new way to medical systems biology. Expert Rev Proteomics 5:361–369

    Article  PubMed  CAS  Google Scholar 

  53. Colwill K, Gräslund S (2011) A roadmap to generate renewable protein binders to the human proteome. Nat Methods 8:551–558

    Article  PubMed  CAS  Google Scholar 

  54. Pershad K, Pavlovic JD, Gräslund S, Nilsson P, Colwill K, Karatt-Vellatt A, Schofield DJ, Dyson MR, Pawson T, Kay BK, McCafferty J (2010) Generating a panel of highly specific antibodies to 20 human SH2 domains by phage display. Protein Eng Des Sel 23:279–288

    Article  PubMed  CAS  Google Scholar 

  55. Pitaksajjakul P, Lekcharoensuk P, Upragarin N, Barbas CF, Ibrahim MS, Ikuta K, Ramasoota P (2010) Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library. Biochem Biophys Res Commun 395:496–501

    Article  PubMed  CAS  Google Scholar 

  56. Dübel S (2007) Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 74:723–729

    Article  PubMed  Google Scholar 

  57. Frenzel A, Fröde D, Meyer T, Schirrmann T, Hust M (2012) Generating recombinant antibodies for research. Diagnostics and therapy using phage display. Curr Biotechnol 1:33–41

    Article  CAS  Google Scholar 

  58. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116

    Article  PubMed  CAS  Google Scholar 

  59. Nieri P, Donadio E, Rossi S, Adinolfi B, Podestà A (2009) Antibodies for therapeutic uses and the evolution of biotechniques. Curr Med Chem 16:753–779

    Article  PubMed  CAS  Google Scholar 

  60. Thie H, Meyer T, Schirrmann T, Hust M, Dübel S (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9:439–446

    Article  PubMed  CAS  Google Scholar 

  61. Osbourn J, Groves M, Vaughan T (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36:61–68

    Article  PubMed  CAS  Google Scholar 

  62. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318

    Article  PubMed  CAS  Google Scholar 

  63. Bugli F, Paroni Sterbini F, Graffeo R, Caridi F, Iantomasi R, Torelli R, Masucci L, Cattani P, Fadda G (2011) Effective use of nitrocellulose-blotted antigens for phage display monoclonal antibody selection. New Microbiol 34:281–286

    PubMed  Google Scholar 

  64. Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145

    Article  PubMed  CAS  Google Scholar 

  65. Nakamura M, Watanabe H, Nishimiya Y, Tsumoto K, Ishimura K, Kumagai I (2001) Panning of a phage VH library using nitrocellulose membranes: application to selection of a human VH library. J Biochem 129:209–212

    Article  PubMed  CAS  Google Scholar 

  66. Berger S, Hinz D, Bannantine JP, Griffin JFT (2006) Isolation of high-affinity single-chain antibodies against Mycobacterium avium subsp. paratuberculosis surface proteins from sheep with Johne’s disease. Clin Vaccine Immunol 13:1022–1029

    Article  PubMed  CAS  Google Scholar 

  67. Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233

    Article  PubMed  CAS  Google Scholar 

  68. Wezler X, Hust M, Helmsing S, Schirrmann T, Dübel S (2012) Human antibodies targeting CD30+ lymphomas. Hum Antibodies 21:13–28

    PubMed  CAS  Google Scholar 

  69. Conway JO, Sherwood LJ, Collazo MT, Garza JA, Hayhurst A (2010) Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS ONE 5:e8818

    Article  PubMed  Google Scholar 

  70. Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS ONE 6:e27756

    Article  PubMed  CAS  Google Scholar 

  71. Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155

    Article  PubMed  CAS  Google Scholar 

  72. Schirrmann T, Hust M (2010) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651:177–209

    Article  PubMed  CAS  Google Scholar 

  73. Goffinet M, Chinestra P, Lajoie-Mazenc I, Medale-Giamarchi C, Favre G, Faye J-C (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34

    Article  PubMed  Google Scholar 

  74. Kaku Y, Noguchi A, Okutani A, Inoue S, Tanabayashi K, Yamamoto Y, Hotta A, Suzuki M, Sugiura N, Yamada A (2012) Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form. BMC Res Notes 5:483

    Article  PubMed  CAS  Google Scholar 

  75. Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097

    Article  PubMed  CAS  Google Scholar 

  76. Finnern R, Pedrollo E, Fisch I, Wieslander J, Marks JD, Lockwood CM, Ouwehand WH (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269–281

    Article  PubMed  CAS  Google Scholar 

  77. Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc M-P, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764

    Article  PubMed  CAS  Google Scholar 

  78. Mersmann M, Schmidt A, Tesar M, Schöneberg A, Welschof M, Kipriyanov S, Terness P, Little M, Pfizenmaier K, Moosmayer D (1998) Monitoring of scFv selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220:51–58

    Article  PubMed  CAS  Google Scholar 

  79. Hust M, Dübel S, Schirrmann T (2007) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 408:243–255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the FP7 collaborative projects AffinityProteome (contract 222635) and AFFINOMICS (contract 241481). This paper is an updated and revised version of [57, 72, 79].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hust, M., Frenzel, A., Schirrmann, T., Dübel, S. (2014). Selection of Recombinant Antibodies from Antibody Gene Libraries. In: Ochs, M. (eds) Gene Function Analysis. Methods in Molecular Biology, vol 1101. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-721-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-721-1_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-720-4

  • Online ISBN: 978-1-62703-721-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics