Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1097))

Abstract

Darwin’s conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Sequences are ordered strings of elements s k (k = 1, , l), which in case of RNA are chosen from the alphabet \(\mathcal{A} =\{ \mbox{ A,U,C,G}\}\). The notions of sequence space and structure or shape space are essential for the definition of structure and function as results of mappings.

  2. 2.

    For convenience we define \(\boldsymbol{\pi }\) as column vector but to save space we write it as a transposed row vector \(\boldsymbol{\pi }^\prime\).

  3. 3.

    Exceptions are only very special sequences, homopolynucleotides, for example.

  4. 4.

    Timescale number one is the evolutionary process itself. In order to be relevant for evolutionary dynamics the second timescale has to be substantially faster than the first one.

  5. 5.

    By definition of fitness values, f i  ≥ 0, and mutation frequencies, Q ji  ≥ 0, W is a non-negative matrix and the reachability condition boils down to the condition: Wk ≫ 0, i.e., there exists a k such that Wk has exclusively positive entries and Perron–Frobenius theorem applies [88].

  6. 6.

    An exact calculation of \(\bar{f}_{-m}\) is difficult because it requires knowledge of the stationary concentrations of all variants in the population: \(\bar{x}_{i};\, x = 1,\ldots,n\). For computational details see [23, 89, 91, 92].

  7. 7.

    It should be noted that artificially synthesized two letter (DU; D = 2,6-diamino-purine) ribozymes have perfect catalytic properties [93].

  8. 8.

    Zero or negative concentrations of sequences clearly contradict the exact results described above and are an artifact of the perturbation approach. Nevertheless, the agreement between the exact solutions and the perturbation results up to the error threshold as shown in Fig. 15 is remarkable.

  9. 9.

    The seed s indeed defines all details of the landscape that in turn is completely defined by s and the particular type of the pseudorandom number generator.

  10. 10.

    Several measures for the distance between structures can be applied. Here we have chosen the Hamming distance between the parentheses notation of structures, d S.

  11. 11.

    The smallness record is currently hold by Nanoarchaeum equitans with a genome size of 490,885 base pairs.

  12. 12.

    An early paper [168] claimed that zero fitness values are incompatible with the existence of quasispecies and error threshold. The result, however, turned out to be an artifact of a rather naıve linear sequence space , since later works demonstrated that selection and mutation on realistic sequence spaces sustain error thresholds also in the presence of lethal variants [113, 114].

  13. 13.

    Random replication expresses the fact that error accumulation destroys the relation between template and copy and inheritance is no longer possible.

  14. 14.

    The variants ara + and ara differ in a single point mutation and in the capacity to utilize arabinose as nutrient. In growth media free of arabinose the mutation \(ar{a}^{+} \leftrightarrow ar{a}^{-}\) is neutral [173].

  15. 15.

    Most Escherichia coli strains are unable to live on citrate buffer because they have no mechanism for uptake of citrate or citric acid into the cell. The growth medium used by Lenski et al. in the long time evolutions experiment contained citrate buffer for pH control.

References

  1. Dobzhansky T (1973) Nothing make sense except in the light of evolution. Am Biol Teach 35:125–129

    Google Scholar 

  2. Griffiths PE (2009) In what sense does ‘nothing make sense except in the light of evolution’? Acta Biotheoretica 57:11–32

    PubMed  Google Scholar 

  3. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones DF (ed) Proceedings of the sixth international congress on genetics, vol 1. Brooklyn Botanic Garden, Ithaca, pp 356–366

    Google Scholar 

  4. Darwin C (1859) The origin of species, Murray edn. John Murray, London

    Google Scholar 

  5. Semple C, Steel MA (2003) Phylogenetics. Oxford lectures series in mathematics and its applications. Oxford University Press, Oxford

    Google Scholar 

  6. Goloboff PA, Catalano SA, Marcos Mirande J, Szumik CA, Salvador Arias J, Källersjö M, Farris JS (2009) Phylogenetic analysis of 73,060 taxa corroborates major eukayrotic groups. Cladistics 25:211–230

    Google Scholar 

  7. Ford Doolittle W (2000) Uprooting the tree of life. Sci Am 262(2):90–95

    Google Scholar 

  8. Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc Roy Soc B 277:819–827

    Google Scholar 

  10. Ford Doolittle W (2010) The attempt on the life of the Tree of Life: science, philosophy, and politics. Biol Philos 25:455–473

    Google Scholar 

  11. Ford Doolittle W, Bapteste E (2007) Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci USA 104:2043–2049

    PubMed  PubMed Central  Google Scholar 

  12. Bapteste E, O’Malley MA, Beiko RG, Ereshevsky M, Gogarten JP, Franklin-Hall L, Lapointe F-J, Dupré J, Dagan T, Boucher Y, Martin W (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    PubMed  PubMed Central  Google Scholar 

  13. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sleator RD (2011) Phylogenetics. Arch Microbiol 193:235–239

    CAS  PubMed  Google Scholar 

  15. Satta Y, Takahata N (2000) DNA archives and our nearest relative: the trichotomy problem revisited. Mol Phylogenet Evol 14(2): 259–275

    CAS  PubMed  Google Scholar 

  16. Ford Doolittle W (1999) Phylogenetic classification and the unversal tree. Science 284:2124–2128

    Google Scholar 

  17. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658– 9662

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen MD, Kellis M (2007) Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes. Genome Res 17:1932–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks. Cambridge University Press, Cambridge

    Google Scholar 

  20. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  21. Hartl DL, Clark AG (1998) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  22. Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, New York

    Google Scholar 

  23. Schuster P (2011) Mathematical modeling of evolution. Solved and open problems. Theor Biosci 130:71–89

    Google Scholar 

  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  25. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–123

    Google Scholar 

  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  27. Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lec Math Life Sci 17:57–86

    Google Scholar 

  28. Uzzell T, Corbin KW (1971) Fitting discrete probability distributions to evolutionary events. Science 172(3988):1089– 1096

    CAS  PubMed  Google Scholar 

  29. Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. J Mol Evol 42:587–596

    Google Scholar 

  30. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximative methods. J Mol Evol 39:306–314. doi:10.1007/BF00160154

    CAS  PubMed  Google Scholar 

  31. Van de Peer Y, Neefs JM, De Rijk P, De Wachter R (1993) Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37:221–232

    Google Scholar 

  32. Meyer S, von Haeseler A (2003) Identifying site-specific substitution rates. Mol Biol Evol 20:182–189

    CAS  PubMed  Google Scholar 

  33. Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  34. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  35. Rodriguez F, Oliver JL, Main A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    CAS  PubMed  Google Scholar 

  36. Felsenstein J, Churchill GA (1996) A hidden markov model approach to variation among sites in rate of evolution. J Mol Evol 13:92–104

    Google Scholar 

  37. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  38. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    CAS  PubMed  Google Scholar 

  39. Schöniger M, von Haeseler A (1994) A stochastic model for the evolution of autocorrelated DNA sequences. Mol Phylogenet Evol 3:240–247. doi: 10.1006/mpev.1994.1026

    PubMed  Google Scholar 

  40. Muse SV (1995) Evolutionary analyses of DNA sequences subject to constraints on secondary structure. Genetics 139:1429–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rzhetsky A (1995) Estimating substitution rates in ribosomal RNA genes. Genetics 141:771–783

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tillier ERM (1994) Maximum likelihood with multi-parameter models of substitution. J Mol Evol 39:409–417

    CAS  Google Scholar 

  43. Tillier ERM, Collins RA (1998) High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA. Genetics 148:1993–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tillier ERM, Collins RA (1995) Neighbor joining and maximum likelihood with RNA sequences: addressing the interdependence of sites. Mol Biol Evol 12:7–15

    CAS  Google Scholar 

  45. Savill NJ, Hoyle DC, Higgs PG (2000) RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics 157:399–411

    Google Scholar 

  46. Innan H, Stephan W (2001) Selection intensity against deleterious mutations in RNA secondary structures and rate of compensatory nucleotide substitutions. Genetics 159:389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stephan W (1996) The rate of compensatory evolution. Genetics 144:419–426

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith AD, Lui TWH, Tillier ERM (2004) Empirical models for substitution in ribosomal RNA. Mol Biol Evol 21:419–427

    CAS  PubMed  Google Scholar 

  49. Smit S, Widmann J, Knight R (2007) Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res 35:3339–3354

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bulmer M (1986) Neighboring base effects on substitution rates in pseudogenes. Mol Biol Evol 3:322–329

    CAS  PubMed  Google Scholar 

  51. Morton BR (1995) Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proc Natl Acad Sci USA 92:9717–9721

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jensen JL, Pedersen A-MK (2000) Probabilistic models of DNA sequence evolution with context dependent rates of substitution. Adv Appl Prob 32:449–467. (Pages in jstore: 499–517)

    Google Scholar 

  53. Christensen OF, Hobolth A, Jensen JL (2005) Pseudo-likelihood analysis of codon substitution models with neighbor-dependent rates. J Comput Biol 12:1166–1182

    CAS  PubMed  Google Scholar 

  54. Baele G, Van de Peer Y, Vansteelandt S (2008) A model-based approach to study nearest-neighbor influences reveals complex substitution patterns in non-coding sequences. Syst Biol 57:675–692

    CAS  PubMed  Google Scholar 

  55. Siepel A, Haussler D (2004) Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21:468–488

    CAS  PubMed  Google Scholar 

  56. Bérard J, Gouéré JB, Piau D (2008) Solvable models of neighbor-dependent substitution processes. Math Biosci 211:56–88

    PubMed  Google Scholar 

  57. Duret L, Galtier N (2000) The covariation between tpa deficiency, cpg deficiency, and g+c content of human isochores is due to a mathematical artifact. Mol Biol Evol 17(11):1620–1625

    CAS  PubMed  Google Scholar 

  58. Arndt PF, Burge CB, Hwa T (2003) DNA sequence evolution with neighbor-dependent mutation. J Comput Biol 10:313–322

    CAS  PubMed  Google Scholar 

  59. Robinson DM, Jones DT, Kishino H, Goldman N, Thorne JL (2003) Protein evolution with dependence among codons due to tertiary structure. Mol Biol Evol 20:1692–1704

    CAS  PubMed  Google Scholar 

  60. Yu J, Thorne JL (2006) Dependence among sites in RNA evolution. Mol Biol Evol 23:1525–1537

    CAS  PubMed  Google Scholar 

  61. Pedersen A-MK, Jensen JL (2001) A dependent rates model and MCMC based methodology for the maximum likelihood analysis of sequences with overlapping reading frames. Mol Biol Evol 18:763–776

    CAS  PubMed  Google Scholar 

  62. Gesell T, von Haeseler A (2006) In silico sequence evolution with site-specific interactions along phylogenetic trees. Bioinformatics 22:716–722

    CAS  PubMed  Google Scholar 

  63. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:2–33

    Google Scholar 

  64. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  65. Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA: the early adaptor. Naturwissenschaften 68:217–228

    CAS  PubMed  Google Scholar 

  66. Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654–662

    CAS  PubMed  Google Scholar 

  67. Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling and the molecular evolutionary clock. J Hist Biol 31:155–178

    CAS  PubMed  Google Scholar 

  68. Takahata N (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kimura M (1983) The neutral theory of molecular evolution. Cambridge Univeresity Press, Cambridge

    Google Scholar 

  70. Ayala FJ (1997) Vagaries of the molecular clock. Proc Natl Acad Sci USA 94:7776–7783

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224

    CAS  PubMed  Google Scholar 

  72. Bromham L (2011) The genome as a life-history character: why rate of molecular evolution varies between mammal species. Proc Trans Roy Soc B 366:2503–2513

    Google Scholar 

  73. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20: 3087–3101

    PubMed  Google Scholar 

  74. Roger AJ, Hug LA (2006) The origin and diversification of eukaryotes: problems with molecular phylogenies and molecular clock estimation. Proc Trans Roy Soc B 361: 1039–1054

    CAS  Google Scholar 

  75. Schuster P (2006) Prediction of RNA secondary structures: from theory to models and real molecules. Rep Prog Phys 69: 1419–1477

    CAS  Google Scholar 

  76. Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    CAS  PubMed  Google Scholar 

  77. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–596

    CAS  PubMed  Google Scholar 

  78. Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    CAS  PubMed  Google Scholar 

  79. Winkler WC (2005) Metabolic monitoring by bacterial mRNAs. Arch Microbiol 183:151–159

    CAS  PubMed  Google Scholar 

  80. Boyle PM, Silver PA (2009) Harnessing nature’s toolbox: regulatory elements for synthetic biology. J Roy Soc Interface 6:S535–S546

    CAS  Google Scholar 

  81. Flamm C, Fontana W, Hofacker IL, Schuster P (2000) RNA folding at elementary step resolution. RNA 6:325–338

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolfinger MT, Svrcek-Seiler WA, Flamm C, Hofacker IL, Stadler PF (2004) Efficient computation of RNA folding dynamics. J Phys A Math Gen 37:4731–4741

    CAS  Google Scholar 

  83. Mann M, Klemm K (2011) Efficient exploration of discrete energy landscapes. Phys Rev E 83:011113

    Google Scholar 

  84. Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc R Soc Lond B 255:279–284

    CAS  Google Scholar 

  85. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465–523

    CAS  PubMed  Google Scholar 

  86. Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38: 15–28

    Google Scholar 

  87. Thompson CJ, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142

    Google Scholar 

  88. Seneta E (1981) Non-negative matrices and markov chains, 2nd edn. Springer, New York

    Google Scholar 

  89. Eigen M, McCaskill J, Schuster P (1988) Molecular quasispecies. J Phys Chem 92:6881–6891

    CAS  Google Scholar 

  90. Swetina J, Schuster P (1982) Self-replication with errors - a model for polynucleotide replication. Biophys Chem 16:329–345

    CAS  PubMed  Google Scholar 

  91. Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  92. Eigen M, Schuster P (1978) The hypercycle. A principle of natural self-organization. Part B: the abstract hypercycle. Naturwissenschaften 65:7–41

    Google Scholar 

  93. Reader JS, Joyce GF (2002) A ribozyme composed of only two different nucleotides. Nature 420:841–844

    CAS  PubMed  Google Scholar 

  94. Biebricher CK, Eigen M (2005) The error threshold. Virus Res 107:117–127

    CAS  PubMed  Google Scholar 

  95. Eigen M, Schuster P (1977) The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–565

    CAS  Google Scholar 

  96. Domingo E, Parrish CR, Holland JJ (eds) (2008) Origin and evolution of viruses, 2nd edn. Elsevier, Academic, Amsterdam

    Google Scholar 

  97. Eigen M, Schuster P (1978) The hypercycle. A principle of natural self-organization. Part C: the realistic hypercycle. Naturwissenschaften 65:341–369

    CAS  Google Scholar 

  98. Domingo E (ed) (2005) Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107(2):115–228

    Google Scholar 

  99. Eigen M, Schuster P (1982) Stages of emerging life - five principles of early organization. J Mol Evol 19:47–61

    CAS  PubMed  Google Scholar 

  100. Wiehe T (1997) Model dependency of error thresholds: the role of fitness functions and contrasts between the finite and the infinite sites models. Genet Res Camb 69: 127–136

    Google Scholar 

  101. Fontana W, Schuster P (1998) Shaping space: the possible and the attainable in RNA genotype-phenotype mapping. J Theor Biol 194:491–515

    CAS  PubMed  Google Scholar 

  102. Huynen MA, Stadler PF, Fontana W (1996) Smoothness within ruggedness. The role of neutrality in adaptation. Proc Natl Acad Sci USA 93:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schuster P, Swetina J (1988) Stationary mutant distribution and evolutionary optimization. Bull Math Biol 50:635–660

    CAS  PubMed  Google Scholar 

  104. Maynard Smith J (1998) Evolutionary genetics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  105. Biebricher CK, Eigen M, Gardiner WC Jr (1983) Kinetics of RNA replication. Biochemistry 22:2544–2559

    CAS  PubMed  Google Scholar 

  106. Biebricher CK, Eigen M, Gardiner WC Jr (1984) Kinetics of RNA replication: plus-minus asymmetry and double-strand formation. Biochemistry 23:3186–3194

    CAS  PubMed  Google Scholar 

  107. Biebricher CK, Eigen M, Gardiner WC Jr (1985) Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry 24:6550–6560

    CAS  PubMed  Google Scholar 

  108. Weissmann C (1974) The making of a phage. FEBS Lett 40:S10–S18

    PubMed  Google Scholar 

  109. Phillipson PE, Schuster P (2009) Modeling by nonlinear differential equations. Dissipative and conservative processes. World scientific series on nonlinear science A, vol 69. World Scientific, Singapore

    Google Scholar 

  110. Biebricher CK (1983) Darwinian selection of self-replicating RNA molecules. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 16. Plenum Press, New York, pp 1–52

    Google Scholar 

  111. Biebricher CK, Gardiner WC Jr (1997) Molecular evolution of RNA in vitro. Biophys Chem 66:179–192

    CAS  PubMed  Google Scholar 

  112. Spiegelman S (1971) An approach to the experimental analysis of precellular evolution. Quart Rev Biophys 4:213–253

    CAS  Google Scholar 

  113. Takeuchi N, Hogeweg P (2007) Error-thresholds exist in fitness landscapes with lethal mutants. BMC Evol Bio 7:15

    Google Scholar 

  114. Tejero H, Marín A, Moran F (2010) Effect of lethality on the extinction and on the error threshold of quasispecies. J Theor Biol 262:733–741

    PubMed  Google Scholar 

  115. Güell M, van Noort V, Yus E, Chen W-H, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kühner S, Rode M, Suyama M, Schmidt S, Gavin A-C, Bork P, Serrano L (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271

    PubMed  Google Scholar 

  116. Kühner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castaño-Diez D, Chen W-H, Devos D, Güell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Böttcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin A-C (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    PubMed  Google Scholar 

  117. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen W-H, Wodke JAH, Güell M, Martínez S, Bourgeois R, Kühner S, Raineri E, Letunic I, Kalinina OV, Rode M, Herrmann R, Gutiérez-Gallego R, Russell RB, Gavin A-C, Bork P, Serrano L (2009) Impact of genome reduction on bacterial metabolism and its regulation. Science 326:1263–1268

    CAS  PubMed  Google Scholar 

  118. Fontana W, Schuster P (1998) Continuity in evolution. On the nature of transitions. Science 280:1451–1455

    CAS  Google Scholar 

  119. Peliti L, Derrida B (1991) Evolution in a flat fitness landscape. Bull Math Biol 53:355–382

    Google Scholar 

  120. Saakian DB, Biebricher CK, Hu C-K (2009) Phase diagram for the Eigen quasispecies theory with a trancated fitness landscape. Phys Rev E 79:041905

    Google Scholar 

  121. Fontana W, Schnabl W, Schuster P (1989) Physical aspects of evolutionary optimization and adaptation. Phys Rev A 40:3301–3321

    CAS  PubMed  Google Scholar 

  122. Fontana W, Schuster P (1987) A computer model of evolutionary optimization. Biophys Chem 26:123–147

    CAS  PubMed  Google Scholar 

  123. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys 22:403–434

    CAS  Google Scholar 

  124. Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    CAS  PubMed  Google Scholar 

  125. Schuster P (2003) Molecular insight into the evolution of phenotypes. In: Crutchfield JP, Schuster P (eds) Evolutionary dynamics – exploring the interplay of accident, selection, neutrality, and function. Oxford University Press, New York, pp 163–215

    Google Scholar 

  126. Biebicher CK, Luce R (1992) In vitro recombination and terminal elongation of RNA by Qβ-replicase. EMBO J 11:5129–5135

    Google Scholar 

  127. Fels A, Hu K, Riesner D (2001) Transcription of potato spindle tuber viroid by RNA polymerase II starts predominantly at two specific sites. Nucleic Acids Res 29:4589–4597

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ding B, Itaya A (2007) Viroid: a useful model for studying the basic principles of infection and RNA biology. Mol Plant Microbe Interact 20:7–20

    CAS  PubMed  Google Scholar 

  129. Zhong X, Archual AJ, Amin AA, Ding B (2008) A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B (2006) Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 80:8566–8581

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Delan-Forino C, Maurel M-C, Torchet C (2011) Replication of avocado sunblotch viroid in the yeast Saccaromyces cerevisiae. J Virol 85:3229–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130

    CAS  PubMed  Google Scholar 

  134. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, Onge RPSt, Van der Sluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Li Z-Y, Liang W, Marback M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaver G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras A-C, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 317: 425–431

    Google Scholar 

  135. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  136. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  137. Saitou N, Nei M (1987) The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  138. Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol Biol Evol 13:494–504

    CAS  PubMed  Google Scholar 

  139. Yang Z (1996) Maximum-likelihood models for combined analyses of multiple sequences data. J Mol Evol 42:587–596

    CAS  PubMed  Google Scholar 

  140. Schöniger M, von Haeseler A (1995) Performance of the maximum likelihood, neighbor joining, and maximum parsimony methods when sequence site are not independent. Syst Biol 44:533–547

    Google Scholar 

  141. Hudelot C, Gowri-Shankar H, Rattray M, Higgs P (2003) RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenet Evol 28:241–252

    CAS  PubMed  Google Scholar 

  142. Ronquist F, Huelsenbeck JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180. URL http://bioinformatics.oxfordjournals.org/content/19/12/1572.abstract

    Google Scholar 

  143. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  144. Keller A, Forster F, Muller T, Dandekar T, Schultz J, Wolf M (2010) Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biol Direct 5:4

    PubMed  PubMed Central  Google Scholar 

  145. Letsch HO, Kck P, Stocsits RR, Misof B (2010) The impact of rrna secondary structure consideration in alignment and tree reconstruction: simulated data and a case study on the phylogeny of hexapods. Mol Biol Evol 27(11):2507–2521. doi:10.1093/molbev/msq140. URL http://mbe.oxfordjournals.org/content/27/11/2507.abstract

  146. Caetano-Anolles G (2002) Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 30:2575–2587

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Thi Nguyen MA, Gesell T, von Haeseler A (2012) Imosm: intermittent evolution and robustness of phylogenetic methods. Mol Biol Evol 29:663–673. doi:10.1093/molbev/msr220. URL http://mbe.oxfordjournals.org/content/early/2011/09/22/molbev.msr220.abstract

  148. Gesell T (2009) A phylogenetic definition of structure. PhD thesis, University of Vienna

    Google Scholar 

  149. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31(13):3423–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K, Lander ES, Kent J, Miller W, Haussler D (2006) Identification and classification of conserved rna secondary structures in the human genome. PLoS Comput Biol 2(4):e33. doi:10.1371/journal.pcbi.0020033. URL http://dx.plos.org/10.1371/journal.pcbi.0020033

  151. Rivas E, Eddy SR (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2:8

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Altschul SF, Erickson BW (1985) Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2(6):526–538

    CAS  PubMed  Google Scholar 

  153. Clote P (2005) An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov-Jacobson energy model. J Comp Biol 12:83–101

    CAS  Google Scholar 

  154. Gesell T, Washietl S (2008) Dinucleotide controlled null models for comparative rna gene prediction. BMC Bioinformatics 9:248–264

    PubMed  PubMed Central  Google Scholar 

  155. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5): 1059–1066. doi:10.1016/S0022-2836(02)00308-X

    CAS  PubMed  Google Scholar 

  156. Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed 46:6420–6436

    CAS  Google Scholar 

  157. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  158. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  159. Klussmann S (ed) (2006) The aptamer handbook. Functional oligonucleotides and their applications. Wiley-VCH, Weinheim

    Google Scholar 

  160. Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836

    CAS  PubMed  Google Scholar 

  161. Brakmann S, Johnsson K (eds) (2002) Directed molecular evolution of proteins or how to improve enzymes for biocatalysis. Wiley-VCH, Weinheim

    Google Scholar 

  162. Jäckel C, Kast P, Hilvert D (2008) Protein design by directed evolution. Annu Rev Biophys 37:153–173

    PubMed  Google Scholar 

  163. Wrenn SJ, Harbury PB (2007) Chemical evolution as a tool for molecular discovery. Annu Rev Biochem 76:331–349

    CAS  PubMed  Google Scholar 

  164. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99:13374–13376

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bull JJ, Ancel Myers L, Lachmann M (2005) Quasispecies made simple. PLoS Comput Biol 1:450–460

    CAS  Google Scholar 

  166. Bull JJ, Sanjuán R, Wilke CO (2007) Theory for lethal mutagenesis for viruses. J Virol 81:2930–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Summers J, Litwin S (2006) Examining the theory of error catastrophe. J Virol 80: 20–26

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wagner GP, Krall P (1993) What is the difference between models of error thresholds and Muller’s ratchet. J Math Biol 32:33–44

    Google Scholar 

  169. Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 38:1315–1341

    Google Scholar 

  170. Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Elena SF, Cooper VS, Lenski RE (1996) Punctiated evolution caused by selection of rare beneficial mutants. Science 272:1802–1804

    CAS  PubMed  Google Scholar 

  172. Papadopoulos D, Schneider D, Meies-Eiss J, Arber W, Lenski RE, Blot M (1999) Genomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci USA 96:3807–3812

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Blount ZD, Christina Z, Lenski RE (2008) Historical contingency an the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7898–7906

    Google Scholar 

  174. Steel M (2005) Should phylogenetic models be trying to “fit an elephant”? Trends Genet 21:307–309

    CAS  PubMed  Google Scholar 

  175. Schöniger M, von Haeseler A (1995) Simulating efficiently the evolution of DNA sequences. Comput Appl Biosci 11:111–115

    PubMed  Google Scholar 

  176. Rambaut A, Grassly NC (1997) Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 13: 235–238

    CAS  PubMed  Google Scholar 

  177. Grassly NC, Adachi J, Rambaut A (1997) PSeq-Gen: an application for the Monte Carlo simulation of protein sequence evolution along phylogenetic trees. Comput Appl Biosci 13:559–560

    CAS  PubMed  Google Scholar 

  178. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  179. Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families. Bioinformatics 14:157–163

    CAS  PubMed  Google Scholar 

  180. Nicholas JS, Hoyle DC, Higgs PG (2000) RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics 157: 399–411

    Google Scholar 

  181. Tufféry P (2002) CS-PSeq-Gen: simulating the evolution of protein sequence under constraints. Bioinformatics 18:1015–1016

    PubMed  Google Scholar 

  182. Pond SLK, Frost SDW, Muse S (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    CAS  PubMed  Google Scholar 

  183. Cartwright RA (2005) DNA assembly with gaps (Dawg): simulating sequence evolution. Bioinformatics 21(Suppl 3):i31–38

    Google Scholar 

  184. Fletcher W, Yang Z (2009) INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol 26:1879–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Guo S, Kim J (2009) Large-scale simulating of RNA macroevolution by an energy-dependent fitness model (Preprint)

    Google Scholar 

  186. Murray JD (2002) Mathematical biology I: an introduction, 3rd edn. Springer, New York

    Google Scholar 

  187. Gardiner CW (2009) Stochastic methods. A handbook for the natural and social sciences. Springer series in synergetics, 4th edn. Springer, Berlin

    Google Scholar 

  188. Gillespie DT (1992) A rigorous derivation of the chemical master equation. Phys A 188:404–425

    CAS  Google Scholar 

  189. van Kampen NG (1961) A power series expansion of the master equation. Can Chem Phys 39:551–567

    Google Scholar 

  190. van Kampen NG (1976) The expansion of the master equation. Adv Chem Phys 34:245–309

    Google Scholar 

  191. Watts A, Schwarz G (eds) (1997) Evolutionary biotechnology – from theory to experiment. Biophysical chemistry, vol 66/2–3. Elesvier, Amsterdam, pp 67–284

    Google Scholar 

  192. Brenner S (1999) Theoretical biology in the third millenium. Philos T Roy Soc Lond B 354:1963–1965

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Carolin Kosiol for helpful discussions. T.G. is funded by a mobility fellowship of the Austrian genome research program GEN-AU and the GEN-AU project “Bioinformatics Integration Network III.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gesell, T., Schuster, P. (2014). Phylogeny and Evolution of RNA Structure. In: Gorodkin, J., Ruzzo, W. (eds) RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Methods in Molecular Biology, vol 1097. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-709-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-709-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-708-2

  • Online ISBN: 978-1-62703-709-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics