Mathematical Modeling of Isotope Labeling Experiments for Metabolic Flux Analysis

  • Shilpa Nargund
  • Ganesh Sriram
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1083)

Abstract

Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.

Key words

Metabolic flux analysis Isotope labeling experiment Mathematical model Isotopomer balance Cumomer Elementary metabolite unit Bondomer 13CFLUX2 Metran NMR2Flux+ FiatFlux OpenFLUX 

References

  1. 1.
    Stephanopoulos G (2002) Metabolic engineering: perspective of a chemical engineer. AIChE J 48:920–926CrossRefGoogle Scholar
  2. 2.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11PubMedCrossRefGoogle Scholar
  3. 3.
    Giegé P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ (2003) Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15:2140–2151PubMedCrossRefGoogle Scholar
  4. 4.
    Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057PubMedCrossRefGoogle Scholar
  5. 5.
    Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511PubMedCrossRefGoogle Scholar
  6. 6.
    Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206PubMedCrossRefGoogle Scholar
  7. 7.
    Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753. doi:10.1093/nar/gkr1014 PubMedCrossRefGoogle Scholar
  8. 8.
    Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46PubMedCrossRefGoogle Scholar
  9. 9.
    Sriram G, Shanks JV (2004) Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab Eng 6:116–132PubMedCrossRefGoogle Scholar
  10. 10.
    Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47PubMedCrossRefGoogle Scholar
  11. 11.
    Shanks JV (2005) Phytochemical engineering: combining chemical reaction engineering with plant science. AIChE J 51:2–7CrossRefGoogle Scholar
  12. 12.
    Nargund S, Sriram G (2013) Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks. Mol Biosyst 9:99–112PubMedCrossRefGoogle Scholar
  13. 13.
    Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246PubMedCrossRefGoogle Scholar
  14. 14.
    Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2012) 13CFLUX2 – high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29:143–145. doi:10.1093/bioinformatics/bts646 PubMedCrossRefGoogle Scholar
  15. 15.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86PubMedCrossRefGoogle Scholar
  16. 16.
    Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283:20621–20627PubMedCrossRefGoogle Scholar
  17. 17.
    Sriram G, Rahib L, He J-S, Campos AE, Parr LS, Liao JC, Dipple KM (2008) Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. Mol Genet Metab 93:145–159PubMedCrossRefGoogle Scholar
  18. 18.
    Zamboni N, Fischer E, Sauer U (2005) FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209PubMedCrossRefGoogle Scholar
  19. 19.
    Quek L-E, Wittmann C, Nielsen L, Kromer J (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Factor 8:25CrossRefGoogle Scholar
  20. 20.
    Heldt H-W, Piechulla B (2010) Plant biochemistry. Academic, New York, NYGoogle Scholar
  21. 21.
    Singh BK (1998) Plant amino acids (books in soils, plants, & the environment). CRC, Boca Raton, FLGoogle Scholar
  22. 22.
    Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503PubMedCrossRefGoogle Scholar
  23. 23.
    Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37PubMedCrossRefGoogle Scholar
  25. 25.
    Smith JM, Ness HCV, Abbott MM (2005) Introduction to chemical engineering thermodynamics, 7th edn. McGraw Hill Higher Education, New York, NYGoogle Scholar
  26. 26.
    Sriram G, Gonzalez-Rivera O, Shanks JV (2006) Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol Prog 22:1659–1663PubMedGoogle Scholar
  27. 27.
    Graham JWA, Williams TCR, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738PubMedCrossRefGoogle Scholar
  28. 28.
    Lohr M, Schwender J, Polle JEW (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22PubMedCrossRefGoogle Scholar
  29. 29.
    Schwender J, Seemann M, Lichtenthaler H, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80PubMedGoogle Scholar
  30. 30.
    Knappe S, Flugge UI, Fischer K (2003) Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 131:1178–1190PubMedCrossRefGoogle Scholar
  31. 31.
    Weber APM, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77PubMedCrossRefGoogle Scholar
  32. 32.
    Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011PubMedCrossRefGoogle Scholar
  33. 33.
    Colón AM, Sengupta N, Rhodes D, Dudareva N, Morgan J (2010) A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Plant J 62:64–76PubMedCrossRefGoogle Scholar
  34. 34.
    Ravikirthi P, Suthers PF, Maranas CD (2011) Construction of an E. coli genome-scale atom mapping model for MFA calculations. Biotechnol Bioeng 108:1372–1382PubMedCrossRefGoogle Scholar
  35. 35.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Möllney M, Wiechert W, Kownatzki D, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng 66:86–103PubMedCrossRefGoogle Scholar
  37. 37.
    Wiechert W, Wurzel M (2001) Metabolic isotopomer labeling systems: Part I: global dynamic behavior. Math Biosci 169:173–205PubMedCrossRefGoogle Scholar
  38. 38.
    Van Winden WA, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C, 1H] COSY NMR data. Biotechnol Bioeng 80:731–745PubMedCrossRefGoogle Scholar
  39. 39.
    Srour O, Young J, Eldar Y (2011) Fluxomers: a new approach for 13C metabolic flux analysis. BMC Syst Biol 5:129PubMedCrossRefGoogle Scholar
  40. 40.
    Schmidt K, Nørregaard LC, Pedersen B, Meissner A, Duus JO, Nielsen JO, Villadsen J (1999) Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Metab Eng 1:166–179PubMedCrossRefGoogle Scholar
  41. 41.
    Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol Bioeng 55:101–117PubMedCrossRefGoogle Scholar
  42. 42.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337PubMedCrossRefGoogle Scholar
  43. 43.
    Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283PubMedCrossRefGoogle Scholar
  44. 44.
    Winden WAV, Wittmann C, Heinzle E, Heijnen JJ (2002) Correcting mass isotopomer distributions for naturally occurring isotopes. Biotechnol Bioeng 80:477–479PubMedCrossRefGoogle Scholar
  45. 45.
    Van Winden W, Schipper D, Verheijen P, Heijnen J (2001) Innovations in generation and analysis of 2D [13C, 1H] COSY NMR spectra for metabolic flux analysis purposes. Metab Eng 3:322–343PubMedCrossRefGoogle Scholar
  46. 46.
    Klapa MI, Aon JC, Stephanopoulos G (2003) Ion-trap mass spectrometry used in combination with gas chromatography for high-resolution metabolic flux determination. Biotechniques 34:832–836, 838, 840 passimPubMedGoogle Scholar
  47. 47.
    Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13:225–233PubMedCrossRefGoogle Scholar
  48. 48.
    Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68:2243–2257PubMedCrossRefGoogle Scholar
  49. 49.
    Libourel IGL, Gehan JP, Shachar-Hill Y (2007) Design of substrate label for steady state flux measurements in plant systems using the metabolic network of Brassica napus embryos. Phytochemistry 68:2211–2221PubMedCrossRefGoogle Scholar
  50. 50.
    Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174PubMedCrossRefGoogle Scholar
  51. 51.
    Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66:69–85PubMedCrossRefGoogle Scholar
  52. 52.
    Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Shilpa Nargund
    • 1
  • Ganesh Sriram
    • 2
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations