Genome-Scale Models of Plant Metabolism

  • Margaret Simons
  • Ashish Misra
  • Ganesh Sriram
Part of the Methods in Molecular Biology book series (MIMB, volume 1083)


A genome-scale model (GSM) is an in silico metabolic model comprising hundreds or thousands of chemical reactions that constitute the metabolic inventory of a cell, tissue, or organism. A complete, accurate GSM, in conjunction with a simulation technique such as flux balance analysis (FBA), can be used to comprehensively predict cellular metabolic flux distributions for a given genotype and given environmental conditions. Apart from enabling a user to quantitatively visualize carbon flow through metabolic pathways, these flux predictions also facilitate the hypothesis of new network properties. By simulating the impacts of environmental stresses or genetic interventions on metabolism, GSMs can aid the formulation of nontrivial metabolic engineering strategies. GSMs for plants and other eukaryotes are significantly more complicated than those for prokaryotes due to their extensive compartmentalization and size. The reconstruction of a GSM involves creating an initial model, curating the model, and then rendering the model ready for FBA. Model reconstruction involves obtaining organism-specific reactions from the annotated genome sequence or organism-specific databases. Model curation involves determining metabolite protonation status or charge, ensuring that reactions are stoichiometrically balanced, assigning reactions to appropriate subcellular compartments, deleting generic reactions or creating specific versions of them, linking dead-end metabolites, and filling of pathway gaps to complete the model. Subsequently, the model requires the addition of transport, exchange, and biomass synthesis reactions to make it FBA-ready. This cycle of editing, refining, and curation has to be performed iteratively to obtain an accurate model. This chapter outlines the reconstruction and curation of GSMs with a focus on models of plant metabolism.

Key words

Genome-scale metabolic models Metabolic pathway databases Curation Compartmentalization Intercompartmental transporters The SuBliMinaL toolbox COBRA toolbox KEGG MetaCyc 


  1. 1.
    Milne C, Eddy J, Raju R, Ardekani S, Kim P-J, Senger R, Jin Y-S, Blaschek H, Price N (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5:130PubMedCrossRefGoogle Scholar
  2. 2.
    Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4:R54PubMedCrossRefGoogle Scholar
  3. 3.
    Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzaeRd metabolic genotype. J Biol Chem 274:17410–17416PubMedCrossRefGoogle Scholar
  4. 4.
    Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190PubMedCrossRefGoogle Scholar
  5. 5.
    Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121PubMedCrossRefGoogle Scholar
  6. 6.
    Seaver SMD, Henry CS, Hanson AD (2012) Frontiers in metabolic reconstruction and modeling of plant genomes. J Exp Bot 63: 2247–2258PubMedCrossRefGoogle Scholar
  7. 7.
    Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23:617–623PubMedCrossRefGoogle Scholar
  8. 8.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104:1777–1782PubMedCrossRefGoogle Scholar
  9. 9.
    Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982PubMedCrossRefGoogle Scholar
  10. 10.
    Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BØ (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143PubMedCrossRefGoogle Scholar
  11. 11.
    Mo ML, Palsson BØ, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37PubMedCrossRefGoogle Scholar
  12. 12.
    Williams TCR, Poolman MG, Howden AJM, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ (2010) A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. Plant Physiol 154:311–323PubMedCrossRefGoogle Scholar
  13. 13.
    Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28: 45–248PubMedCrossRefGoogle Scholar
  14. 14.
    Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117PubMedCrossRefGoogle Scholar
  15. 15.
    Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320PubMedCrossRefGoogle Scholar
  16. 16.
    Reed JL, Palsson BØ (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185:2692–2699PubMedCrossRefGoogle Scholar
  17. 17.
    Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121PubMedCrossRefGoogle Scholar
  18. 18.
    Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535PubMedCrossRefGoogle Scholar
  19. 19.
    Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309PubMedCrossRefGoogle Scholar
  20. 20.
    Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71PubMedCrossRefGoogle Scholar
  21. 21.
    Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11:213PubMedCrossRefGoogle Scholar
  22. 22.
    Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedCrossRefGoogle Scholar
  23. 23.
    De Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2009) AraGEM – a genome-scale reconstruction of the primary metabolic network in Arabidopsis thaliana. Plant Physiol. doi:10.1104/pp. 109.148817 PubMedGoogle Scholar
  24. 24.
    Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis thaliana and some of its properties. Plant Physiol 151:1570–1581PubMedCrossRefGoogle Scholar
  25. 25.
    Radrich K, Tsuruoka Y, Dobson P, Gevorgyan A, Swainston N, Baart G, Schwartz J-M (2010) Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Syst Biol 4:114PubMedCrossRefGoogle Scholar
  26. 26.
    Saha R, Suthers PF, Maranas CD (2011) Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PLoS One 6:e21784PubMedCrossRefGoogle Scholar
  27. 27.
    De Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2010) C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol 154:1871–1885CrossRefGoogle Scholar
  28. 28.
    Chang RL, Ghamsari L, Manichaikul A, Hom EFY, Balaji S, Fu W, Shen Y, Hao T, Palsson BO, Salehi-Ashtiani K et al (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518PubMedCrossRefGoogle Scholar
  29. 29.
    Lunn JE (2007) Compartmentation in plant metabolism. J Exp Bot 58:35–47PubMedCrossRefGoogle Scholar
  30. 30.
    Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246PubMedCrossRefGoogle Scholar
  31. 31.
    Linka N, Weber APM (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53PubMedCrossRefGoogle Scholar
  32. 32.
    Sriram G, Gonzalez-Rivera O, Shanks JV (2006) Determination of biomass composition of Catharanthus roseus hairy roots for metabolic flux analysis. Biotechnol Prog 22: 1659–1663PubMedGoogle Scholar
  33. 33.
    Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5:671–685PubMedCrossRefGoogle Scholar
  34. 34.
    Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46PubMedCrossRefGoogle Scholar
  35. 35.
    Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089PubMedCrossRefGoogle Scholar
  36. 36.
    Wrzodek C, Dräger A, Zell A (2011) KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats. Bioinformatics 27:2314–2315PubMedCrossRefGoogle Scholar
  37. 37.
    Swainston N, Smallbone K, Mendes P, Kell D, Paton N (2011) The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinforma 8(2):186Google Scholar
  38. 38.
    Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11:40–79PubMedCrossRefGoogle Scholar
  39. 39.
    Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738PubMedCrossRefGoogle Scholar
  40. 40.
    Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v.20. Nat Protoc 6:1290–1307PubMedCrossRefGoogle Scholar
  41. 41.
    Thorleifsson SG, Thiele I (2011) rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27:2009–2010PubMedCrossRefGoogle Scholar
  42. 42.
    Wurtele ES, Li L, Berleant D, Cook D, Dickerson JA, Ding J, Hofmann H, Lawrence M, Lee E, Li J (2007) MetNet: systems biology tools for Arabidopsis. In: Wurtele ES, Nikolau BJ (eds) Concepts in plant metabolomics. Springer, Heidelberg, pp 145–157CrossRefGoogle Scholar
  43. 43.
    Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5:76PubMedCrossRefGoogle Scholar
  44. 44.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New YorkGoogle Scholar
  45. 45.
    Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versues the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196PubMedCrossRefGoogle Scholar
  46. 46.
    Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotechnol 77: 81–102PubMedCrossRefGoogle Scholar
  47. 47.
    Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136: 3043–3057PubMedCrossRefGoogle Scholar
  48. 48.
    Masakapalli SK, Lay PL, Huddleston JE, Pollock NL, Kruger NJ, Ratcliffe RG (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis thaliana cell suspension using steady-state stable isotope labeling. Plant Physiol 152:602–619PubMedCrossRefGoogle Scholar
  49. 49.
    Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y (2012) Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. Plant Cell Environ 35:1232–1244PubMedCrossRefGoogle Scholar
  50. 50.
    Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608PubMedCrossRefGoogle Scholar
  51. 51.
    Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Gall SL et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084PubMedCrossRefGoogle Scholar
  52. 52.
    Heazlewood JL, Millar AH (2005) AMPDB: the Arabidopsis mitochondrial protein database. Nucleic Acids Res 33:D605–D610PubMedCrossRefGoogle Scholar
  53. 53.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971PubMedCrossRefGoogle Scholar
  54. 54.
    Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedCrossRefGoogle Scholar
  55. 55.
    Hettema EH, Tabak HF (2000) Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta 1486: 18–27PubMedCrossRefGoogle Scholar
  56. 56.
    Weber AP, Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581:2215–2222PubMedCrossRefGoogle Scholar
  57. 57.
    Weber APM (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7: 247–253PubMedCrossRefGoogle Scholar
  58. 58.
    Bräutigam A, Weber AP (2009) Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes. Mol Plant 2:1247–1261PubMedCrossRefGoogle Scholar
  59. 59.
    Weber AP, von Caemmerer S (2010) Plastid transport and metabolism of C3 and C4 plants—comparative analysis and possible biotechnological exploitation. Curr Opin Plant Biol 13:256–264CrossRefGoogle Scholar
  60. 60.
    Pilalis E, Chatziioannou A, Thomasset B et al (2011) An in silico compartmentalized metabolic model of Brassica napus enables the systemic study of regulatory aspects of plant central metabolism. Biotechnology and Bioengineering 108:1673–1682Google Scholar
  61. 61.
    Poolman MG, Kundu S, Shaw R et al (2013) Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism. Plant Physiology 162:1060–1072Google Scholar
  62. 62.
    Lakshmanan M, Zhang Z, Mohanty B et al (2013) Elucidating the Rice Cells Metabolism under Flooding and Drought Stresses Using Flux-based Modelling and Analysis. Plant Physiology 162:2140–2150Google Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Margaret Simons
    • 1
    • 2
  • Ashish Misra
    • 1
    • 3
  • Ganesh Sriram
    • 4
  1. 1.University of MarylandCollege ParkUSA
  2. 2.Pennsylvania State UniversityState CollegeUSA
  3. 3.Center for Energy BiosciencesInstitute of Chemical TechnologyMumbaiIndia
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations