Putting the Plant Metabolic Network Pathway Databases to Work: Going Offline to Gain New Capabilities

  • Kate Dreher
Part of the Methods in Molecular Biology book series (MIMB, volume 1083)


Metabolic databases such as The Plant Metabolic Network/MetaCyc and KEGG PATHWAY are publicly accessible resources providing organism-specific information on reactions and metabolites. KEGG PATHWAY depicts metabolic networks as wired, electronic circuit-like maps, whereas the MetaCyc family of databases uses a canonical textbook-like representation. The first MetaCyc-based database for a plant species was AraCyc, which describes metabolism in the model plant Arabidopsis. This database was created over 10 years ago and has since then undergone extensive manual curation to reflect updated information on enzymes and pathways in Arabidopsis. This chapter describes accessing and using AraCyc and its underlying Pathway Tools software. Specifically, methods for (1) navigating Pathway Tools, (2) visualizing omics data and superimposing the data on a metabolic pathway map, and (3) creating pathways and pathway components are discussed.

Key words

Plant metabolism Omics data analysis Biochemical pathway databases 



The author would like to thank George Dreher for testing the protocols and improving the manuscript as well as Peifen Zhang, Sue Rhee, the members of the Rhee lab, and all of the members of the Pathways Tools/MetaCyc group. This work was funded by the US National Science Foundation (awards NSF DBI-0640769 and IOS-1026003).


  1. 1.
    Kanehisa M (1996) Toward pathway engineering: a new database of genetic and molecular pathways. Sci Technol Jpn 59:34–38Google Scholar
  2. 2.
    Karp PD, Riley M, Paley SM, Pelligrini-Toole A (1996) EcoCyc: an encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 24:32–39PubMedCrossRefGoogle Scholar
  3. 3.
    Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360PubMedCrossRefGoogle Scholar
  4. 4.
    Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-Toole A (2000) The EcoCyc and MetaCyc databases. Nucleic Acids Res 28:56–59PubMedCrossRefGoogle Scholar
  5. 5.
    Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M et al (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473–D479PubMedCrossRefGoogle Scholar
  6. 6.
    Jaiswal P (2011) Gramene database: a hub for comparative plant genomics [Internet]. In: Pereira A (ed) Plant reverse genetics. Humana Press, Totowa, NJ, pp 247–275CrossRefGoogle Scholar
  7. 7.
    Youens-Clark K, Buckler E, Casstevens T, Chen C, DeClerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS et al (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:D1085–D1094PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang P, Dreher K, Karthikeyan A, Chi A, Pujar A, Caspi R, Karp P, Kirkup V, Latendresse M, Lee C et al (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 153:1479–1491PubMedCrossRefGoogle Scholar
  9. 9.
    May P, Christian J-O, Kempa S, Walther D (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10:209PubMedCrossRefGoogle Scholar
  10. 10.
    Urbanczyk-Wochniak E, Sumner LW (2007) MedicCyc: a biochemical pathway database for Medicago truncatula. Bioinformatics 23:1418–1423PubMedCrossRefGoogle Scholar
  11. 11.
    Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821PubMedCrossRefGoogle Scholar
  12. 12.
    Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460PubMedCrossRefGoogle Scholar
  13. 13.
    Grafahrend-Belau E, Weise S, Koschützki D, Scholz U, Junker BH, Schreiber F (2008) MetaCrop: a detailed database of crop plant metabolism. Nucleic Acids Res 36:D954–D958PubMedCrossRefGoogle Scholar
  14. 14.
    Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622PubMedCrossRefGoogle Scholar
  15. 15.
    Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedCrossRefGoogle Scholar
  16. 16.
    Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F et al (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236PubMedCrossRefGoogle Scholar
  17. 17.
    Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Kate Dreher
    • 1
  1. 1.Carnegie Institution for SciencePalo AltoUSA

Personalised recommendations