Skip to main content

Using the COREX/BEST Server to Model the Native-State Ensemble

  • Protocol
  • First Online:
Protein Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1084))

Abstract

Protein structures under normal conditions exist as ensembles of interconverting, transient microstates. A computer algorithm known as COREX/BEST (Biology using Ensemble-based Structural Thermodynamics) was developed to model microstate structures and describe the native ensembles of proteins in statistical thermodynamic terms. This algorithm has been tested extensively and validated through experimental comparisons examining a range of biophysical and functional phenomena, such as structural cooperativity, pH-dependent stability, and cold denaturation. Here, we describe a Web-based implementation of the COREX/BEST algorithm, called the COREX/BEST Server, and demonstrate how to use this online resource to characterize the structural and thermodynamic properties of the native protein ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428

    Article  PubMed  CAS  Google Scholar 

  2. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  PubMed  CAS  Google Scholar 

  3. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    Article  PubMed  CAS  Google Scholar 

  4. Bai YW, Sosnick TR, Mayne L, Englander SW (1995) Protein folding intermediates: native-state hydrogen exchange. Science 269:192–197

    Article  PubMed  CAS  Google Scholar 

  5. SwintKruse L, Robertson AD (1996) Temperature and pH dependences of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry 35:171–180

    Article  CAS  Google Scholar 

  6. Chamberlain AK, Handel TM, Marqusee S (1996) Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol 3:782–787

    Article  PubMed  CAS  Google Scholar 

  7. Fuentes EJ, Wand AJ (1998) Local dynamics and stability of apocytochrome b(562) examined by hydrogen exchange. Biochemistry 37:3687–3698

    Article  PubMed  CAS  Google Scholar 

  8. Itzhaki LS, Neira JL, Fersht AR (1997) Hydrogen exchange in chymotrypsin inhibitor 2 probed by denaturants and temperature. J Mol Biol 270:89–98

    Article  PubMed  CAS  Google Scholar 

  9. Yang DW, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382

    Article  PubMed  CAS  Google Scholar 

  10. Li ZG, Raychaudhuri S, Wand AJ (1996) Insights into the local residual entropy of proteins provided by nmr relaxation. Protein Sci 5:2647–2650

    Article  PubMed  CAS  Google Scholar 

  11. Hilser VJ, Freire E (1996) Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J Mol Biol 262:756–772

    Article  PubMed  CAS  Google Scholar 

  12. Hilser VJ (2001) Modeling the native state ensemble. Methods Mol Biol 168:93–116

    PubMed  CAS  Google Scholar 

  13. Hilser VJ, Freire E (1997) Predicting the equilibrium protein folding pathway: structure-based analysis of Staphylococcal nuclease. Proteins 27:171–183

    Article  PubMed  CAS  Google Scholar 

  14. Hilser VJ, Townsend BD, Freire E (1997) Structure-based statistical thermodynamic analysis of T4 lysozyme mutants: structural mapping of cooperative interactions. Biophys Chem 64:69–79

    Article  PubMed  CAS  Google Scholar 

  15. Hilser VJ, Dowdy D, Oas TG, Freire E (1998) The structural distribution of cooperative interactions on proteins: analysis of the native state ensemble. Proc Natl Acad Sci USA 95:9903–9908

    Article  PubMed  CAS  Google Scholar 

  16. Pan H, Lee JC, Hilser VJ (2000) Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc Natl Acad Sci USA 97:12020–12025

    Article  PubMed  CAS  Google Scholar 

  17. Liu T, Whitten ST, Hilser VJ (2007) Functional residues serve a dominant role in mediating the cooperativity of the protein ensemble. Proc Natl Acad Sci U S A 104:4347–4352

    Article  PubMed  CAS  Google Scholar 

  18. Whitten ST, García-Moreno EB, Hilser VJ (2005) Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc Natl Acad Sci U S A 102:4282–4287

    Article  PubMed  CAS  Google Scholar 

  19. Whitten ST, García-Moreno EB, Hilser VJ (2008) Ligand effects on the protein ensemble: unifying the descriptions of ligand binding, local conformational fluctuations, and protein stability. Methods Cell Biol 84:871–891

    Article  PubMed  CAS  Google Scholar 

  20. Babu CR, Hilser VJ, Wand AJ (2004) Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation. Nat Struct Mol Biol 11:352–357

    Article  PubMed  CAS  Google Scholar 

  21. Whitten ST, Kurtz AJ, Pometun MS, Wand AJ, Hilser VJ (2006) Revealing the nature of the native state ensemble through cold denaturation. Biochemistry 45:10163–10174

    Article  PubMed  CAS  Google Scholar 

  22. Schrank TP, Bolen DW, Hilser VJ (2009) Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins. Proc Natl Acad Sci U S A 106:16984–16989

    Article  PubMed  CAS  Google Scholar 

  23. Vertrees J, Barritt P, Whitten ST, Hilser VJ (2005) COREX/BEST server: a web browser-based program that calculates regional stability variations within protein structures. Bioinformatics 21:3318–3319

    Article  PubMed  CAS  Google Scholar 

  24. Hynes TR, Fox RO (1991) The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Proteins 10:92–105

    Article  PubMed  CAS  Google Scholar 

  25. Hilser VJ, García-Moreno EB, Oas TG, Kapp G, Whitten ST (2006) A statistical thermodynamic model of the protein ensemble. Chem Rev 106:1545–1558

    Article  PubMed  CAS  Google Scholar 

  26. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  27. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  28. Whitten ST, García-Moreno EB (2000) pH dependence of stability of staphylococcal nuclease: evidence of substantial electrostatic interactions in the denatured state. Biochemistry 39:14292–14304

    Article  PubMed  CAS  Google Scholar 

  29. Freire E, Murphy KP, Sanchez-Ruiz JM, Galisteo ML, Privalov PL (1992) The molecular basis of cooperativity in protein folding: thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Biochemistry 31:250–256

    Article  PubMed  CAS  Google Scholar 

  30. Griko YV, Venyaminov SY, Privalov PL (1989) Heat and cold denaturation of phosphoglycerate kinase (interaction of domains). FEBS Lett 244:276–278

    Article  PubMed  CAS  Google Scholar 

  31. Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 83:8069–8072

    Article  PubMed  CAS  Google Scholar 

  32. Lopez CF, Darst RK, Rossky PJ (2008) Mechanistic elements of protein cold denaturation. J Phys Chem B 112:5961–5967

    Article  PubMed  CAS  Google Scholar 

  33. Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  PubMed  CAS  Google Scholar 

  34. Matthew JB, Gurd FR, García-Moreno EB, Flanagan MA, March KL, Shire SJ (1985) pH-dependent processes in proteins. CRC Crit Rev Biochem 18:91–197

    Article  PubMed  CAS  Google Scholar 

  35. Schaefer M, van Vlijmen HWT, Karplus M (1998) Electrostatic contributions to molecular free energies in solution. Adv Protein Chem 51:1–57

    Article  PubMed  CAS  Google Scholar 

  36. Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    Article  PubMed  CAS  Google Scholar 

  37. Gomez J, Hilser VJ, Xie D, Freire E (1995) The heat-capacity of proteins. Proteins 22:404–412

    Article  PubMed  CAS  Google Scholar 

  38. Habermann SM, Murphy KP (1996) Energetics of hydrogen bonding in proteins: a model compound study. Protein Sci 5:1229–1239

    Article  PubMed  CAS  Google Scholar 

  39. Xie D, Freire E (1994) Structure-based prediction of protein-folding intermediates. J Mol Biol 242:62–80

    Article  PubMed  CAS  Google Scholar 

  40. D’Aquino JA, Gomez J, Hilser VJ, Lee KH, Amzel LM, Freire E (1996) The magnitude of the backbone conformational entropy change in protein folding. Proteins 25:143–156

    PubMed  Google Scholar 

  41. Lee KH, Xie D, Freire E, Amzel LM (1994) Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation. Proteins 20:68–84

    Article  PubMed  CAS  Google Scholar 

  42. Fitch CA, Karp DA, Lee KK, Stites WE, Lattman EE, García-Moreno EB (2002) Experimental pKa values of buried residues: analysis with continuum methods and role of water penetration. Biophys J 82:3289–3304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01-GM63747 to V.J.H. and the Texas Higher Education Coordinating Board grant 003615-0003-2011 to S.T.W.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media,New York

About this protocol

Cite this protocol

Hilser, V.J., Whitten, S.T. (2014). Using the COREX/BEST Server to Model the Native-State Ensemble. In: Livesay, D. (eds) Protein Dynamics. Methods in Molecular Biology, vol 1084. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-658-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-658-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-657-3

  • Online ISBN: 978-1-62703-658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics