Peptoids and Peptide–Peptoid Hybrid Biopolymers as Peptidomimetics

  • Maciej J. Stawikowski
Part of the Methods in Molecular Biology book series (MIMB, volume 1081)

Abstract

Peptoids (oligomers of N-substituted glycine residues) and peptide–peptoid hybrid polymers (peptomers) are interesting classes of compounds mimicking structure and function of biologically active peptides. The oligomeric peptidomimetics such as peptoids are particularly important compounds since they provide access to an enormous molecular diversity, by variation of the building blocks. The modular structure of peptoids, ease of synthesis, and high compatibility with existing peptide chemistry synthetic protocols, make peptoids and peptoid-containing peptidomimetics ideal tools for structure–activity and drug discovery related studies.

Key words

Peptoids Solid-phase peptide synthesis Peptide–peptoid hybrid polymers Foldamers Peptomers 

References

  1. 1.
    Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KT, Dill KA, Cohen FE, Zuckermann RN (1998) Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA 95:4303–4308PubMedCrossRefGoogle Scholar
  2. 2.
    Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R (2009) A preliminary survey of the peptoid folding landscape. J Am Chem Soc 131:16798–16807PubMedCrossRefGoogle Scholar
  3. 3.
    Choudhary A, Gandla D, Krow GR, Raines RT (2009) Nature of amide carbonyl−carbonyl interactions in proteins. J Am Chem Soc 131:7244–7246PubMedCrossRefGoogle Scholar
  4. 4.
    Shah NH, Butterfoss GL, Nguyen K, Yoo B, Bonneau R, Rabenstein DL, Kirshenbaum K (2008) Oligo(N-aryl glycines): a new twist on structured peptoids. J Am Chem Soc 130:16622–16632PubMedCrossRefGoogle Scholar
  5. 5.
    Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK et al (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 89:9367–9371PubMedCrossRefGoogle Scholar
  6. 6.
    Gellman SH (1998) Foldamers: a manifesto. Acc Chem Res 31:173–180CrossRefGoogle Scholar
  7. 7.
    Armand P, Kirshenbaum K, Goldsmith RA, Farr-Jones S, Barron AE, Truong KT, Dill KA, Mierke DF, Cohen FE, Zuckermann RN, Bradley EK (1998) NMR determination of the major solution conformation of a peptoid pentamer with chiral side chains. Proc Natl Acad Sci USA 95:4309–4314PubMedCrossRefGoogle Scholar
  8. 8.
    Wu CW, Sanborn TJ, Huang K, Zuckermann RN, Barron AE (2001) Peptoid oligomers with α-chiral, aromatic side chains: sequence requirements for the formation of stable peptoid helices. J Am Chem Soc 123:6778–6784PubMedCrossRefGoogle Scholar
  9. 9.
    Shin SB, Yoo B, Todaro LJ, Kirshenbaum K (2007) Cyclic peptoids. J Am Chem Soc 129:3218–3225PubMedCrossRefGoogle Scholar
  10. 10.
    Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee BC, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460PubMedCrossRefGoogle Scholar
  11. 11.
    Culf AS, Ouellette RJ (2010) Solid-phase synthesis of N-substituted glycine oligomers (alpha-peptoids) and derivatives. Molecules 15:5282–5335PubMedCrossRefGoogle Scholar
  12. 12.
    Peptoid Summits website. http://www.peptoids.org
  13. 13.
    Olsen CA (2010) Peptoid-peptide hybrid backbone architectures. Chembiochem 11:152–160PubMedCrossRefGoogle Scholar
  14. 14.
    Goodman M, Wang LL, Feng Y (1994) Synthesis and characterization of sequential peptide-peptoid copolymers. Polym Prepr 35:767–768Google Scholar
  15. 15.
    Hamy F, Felder ER, Heizmann G, Lazdins J, Aboul-ela F, Varani G, Karn J, Klimkait T (1997) An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc Natl Acad Sci USA 94: 3548–3553PubMedCrossRefGoogle Scholar
  16. 16.
    Tran TA, Mattern RH, Afargan M, Amitay O, Ziv O, Morgan BA, Taylor JE, Hoyer D, Goodman M (1998) Design, synthesis, and biological activities of potent and selective somatostatin analogues incorporating novel peptoid residues. J Med Chem 41:2679–2685PubMedCrossRefGoogle Scholar
  17. 17.
    Mattern RH, Tran TA, Goodman M (1998) Conformational analyses of somatostatin-related cyclic hexapeptides containing peptoid residues. J Med Chem 41:2686–2692PubMedCrossRefGoogle Scholar
  18. 18.
    Holder JR, Bauzo RM, Xiang Z, Scott J, Haskell-Luevano C (2003) Design and pharmacology of peptoids and peptide–peptoid hybrids based on the melanocortin agonists core tetrapeptide sequence. Bioorg Med Chem Lett 13:4505–4509PubMedCrossRefGoogle Scholar
  19. 19.
    Kruijtzer JAW, Nijenhuis WAJ, Wanders N, Gispen WH, Liskamp RMJ, Adan RAH (2005) Peptoid-peptide hybrids as potent novel melanocortin receptor ligands. J Med Chem 48:4224–4230PubMedCrossRefGoogle Scholar
  20. 20.
    Masip I, Perez-Paya E, Messeguer A (2005) Peptoids as source of compounds eliciting antibacterial activity. Comb Chem High Throughput Screen 8:235–239PubMedCrossRefGoogle Scholar
  21. 21.
    Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res 35:20–32CrossRefGoogle Scholar
  22. 22.
    Patch JA, Barron AE (2003) Helical peptoid mimics of magainin-2 amide. J Am Chem Soc 125:12092–12093PubMedCrossRefGoogle Scholar
  23. 23.
    Chongsiriwatana NP, Wetzler M, Barron AE (2011) Functional synergy between antimicrobial peptoids and peptides against Gram-negative bacteria. Antimicrob Agents Chemother 55:5399–5402PubMedCrossRefGoogle Scholar
  24. 24.
    Shankaramma SC, Moehle K, James S, Vrijbloed JW, Obrecht D, Robinson JA (2003) A family of macrocyclic antibiotics with a mixed peptide-peptoid beta-hairpin backbone conformation. Chem Commun 1842–1843Google Scholar
  25. 25.
    Zhu WL, Hahm KS, Shin SY (2007) Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. J Pept Sci 13:529–535PubMedCrossRefGoogle Scholar
  26. 26.
    Zhu WL, Song YM, Park Y, Park KH, Yang ST, Kim JI, Park IS, Hahm KS, Shin SY (2007) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim Biophys Acta Biomembr 1768: 1506–1517CrossRefGoogle Scholar
  27. 27.
    Gobbo M, Benincasa M, Bertoloni G, Biondi B, Dosselli R, Papini E, Reddi E, Rocchi R, Tavano R, Gennaro R (2009) Substitution of the arginine/leucine residues in apidaecin Ib with peptoid residues: effect on antimicrobial activity, cellular uptake, and proteolytic degradation. J Med Chem 52:5197–5206PubMedCrossRefGoogle Scholar
  28. 28.
    Fowler SA, Stacy DM, Blackwell HE (2008) Design and synthesis of macrocyclic peptomers as mimics of a quorum sensing signal from Staphylococcus aureus. Org Lett 10: 2329–2332PubMedCrossRefGoogle Scholar
  29. 29.
    Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114:10646–10647CrossRefGoogle Scholar
  30. 30.
    Ostergaard S, Holm A (1997) Peptomers: a versatile approach for the preparation of diverse combinatorial peptidomimetic bead libraries. Mol Divers 3:17–27PubMedCrossRefGoogle Scholar
  31. 31.
    Robey FA (1994) Bromoacetylated synthetic peptides. Starting materials for cyclic peptides, peptomers, and peptide conjugates. Methods Mol Biol 35:73–90PubMedGoogle Scholar
  32. 32.
    Frey A, Neutra MR, Robey FA (1997) Peptomer aluminum oxide nanoparticle conjugates as systemic and mucosal vaccine candidates: synthesis and characterization of a conjugate derived from the C4 domain of HIV-1MN Gp120. Bioconjugate Chem 8:424–433CrossRefGoogle Scholar
  33. 33.
    Huang K, Wu CW, Sanborn TJ, Patch JA, Kirshenbaum K, Zuckermann RN, Barron AE, Radhakrishnan I (2006) A threaded loop conformation adopted by a family of peptoid nonamers. J Am Chem Soc 128:1733–1738PubMedCrossRefGoogle Scholar
  34. 34.
    Heine N, Ast T, Schneider-Mergener J, Reineke U, Germeroth L, Wenschuh H (2003) Synthesis and screening of peptoid arrays on cellulose membranes. Tetrahedron 59:9919–9930CrossRefGoogle Scholar
  35. 35.
    Li S, Bowerman D, Marthandan N, Klyza S, Luebke KJ, Garner HR, Kodadek T (2004) Photolithographic synthesis of peptoids. J Am Chem Soc 126:4088–4089PubMedCrossRefGoogle Scholar
  36. 36.
    Reddy MM, Kodadek T (2005) Protein “fingerprinting” in complex mixtures with peptoid microarrays. Proc Natl Acad Sci USA 102: 12672–12677PubMedCrossRefGoogle Scholar
  37. 37.
    Burkoth TS, Fafarman AT, Charych DH, Connolly MD, Zuckermann RN (2003) Incorporation of unprotected heterocyclic side chains into peptoid oligomers via solid-phase submonomer synthesis. J Am Chem Soc 125: 8841–8845PubMedCrossRefGoogle Scholar
  38. 38.
    Stawikowski M, Stawikowska R, Jaskiewicz A, Zablotna E, Rolka K (2005) Examples of peptide–peptoid hybrid serine protease inhibitors based on the trypsin inhibitor SFTI-1 with complete protease resistance at the P1-P1' reactive site. Chembiochem 6:1057–1061PubMedCrossRefGoogle Scholar
  39. 39.
    Kruijtzer JAW, Hofmeyer LJF, Heerma W, Versluis C, Liskamp RMJ (1998) Solid-phase syntheses of peptoids using Fmoc-protected N-substituted glycines: the synthesis of (retro)peptoids of Leu-enkephalin and substance P. Chem Eur J 4:1570–1580CrossRefGoogle Scholar
  40. 40.
    de Haan EC, Wauben MHM, Grosfeld-Stulemeyer MC, Kruijtzer JAW, Liskamp RMJ, Moret EE (2002) Major histocompatibility complex class II binding characteristics of peptoid–peptide hybrids. Bioorg Med Chem 10:1939–1945PubMedCrossRefGoogle Scholar
  41. 41.
    Simpson LS, Burdine L, Dutta AK, Feranchak AP, Kodadek T (2009) Selective toxin sequestrants for the treatment of bacterial infections. J Am Chem Soc 131:5760–5762PubMedCrossRefGoogle Scholar
  42. 42.
    Alluri PG, Reddy MM, Bachhawat-Sikder K, Olivos HJ, Kodadek T (2003) Isolation of protein ligands from large peptoid libraries. J Am Chem Soc 125:13995–14004PubMedCrossRefGoogle Scholar
  43. 43.
    Lee BC, Chu TK, Dill KA, Zuckermann RN (2008) Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. J Am Chem Soc 130:8847–8855PubMedCrossRefGoogle Scholar
  44. 44.
    Dick F (1994) Acid cleavage/deprotection in Fmoc/tBiu solid-phase peptide synthesis. Methods Mol Biol 35:63–72PubMedGoogle Scholar
  45. 45.
    Figliozzi GM, Goldsmith R, Ng SC, Banville SC, Zuckermann RN (1996) Synthesis of N-substituted glycine peptoid libraries. Methods Enzymol 267:437–447PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maciej J. Stawikowski
    • 1
  1. 1.Torrey Pines Institute for Molecular StudiesPort St. LucieUSA

Personalised recommendations