Synthesis of AApeptides

  • Youhong Niu
  • Yaogang Hu
  • Haifan Wu
  • Jianfeng Cai
Part of the Methods in Molecular Biology book series (MIMB, volume 1081)


The creation and development of nonnatural peptidomimetics has become an area of increasing significance in bioorganic and chemical biology. A wide range of new peptide mimics with novel structures and functions are urgently needed to be explored in order to identify potential drug candidates and targeted probes, and to study protein functions. AApeptides are a new class of peptide mimics based on chiral PNA backbone. They are resistant to proteolytic degradation and have limitless potential for diversification. They have been found to have a wide variety of biological applications including cellular translocation, disruption of protein–protein interactions, formation of nanostructures, antimicrobial activity, etc. The synthesis of AApeptides is modular and straightforward. In this chapter, methods for the synthesis of AApeptides (including different subclasses) are described.

Key words

α-AApeptides γ-AApeptides Solid-phase synthesis Cyclization Lipidation 


  1. 1.
    Wu Y-D, Gellman S (2008) Peptidomimetics. Acc Chem Res 41:1231–1232PubMedCrossRefGoogle Scholar
  2. 2.
    Tuwalska D, Sienkiewicz J, Liberek B (2008) Synthesis and conformational analysis of methyl 3-amino-2,3-dideoxyhexopyranosiduronic acids, new sugar amino acids, and their diglycotides. Carbohydr Res 343:1142–1152PubMedCrossRefGoogle Scholar
  3. 3.
    Risseeuw MD, Mazurek J, van Langenvelde A, van der Marel GA, Overkleeft HS, Overhand M (2007) Synthesis of alkylated sugar amino acids: conformationally restricted L-Xaa-L-Ser/Thr mimics. Org Biomol Chem 5:2311–2314PubMedCrossRefGoogle Scholar
  4. 4.
    Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH (2009) Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers. Proc Natl Acad Sci USA 106: 14751–14756PubMedCrossRefGoogle Scholar
  5. 5.
    Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41:1399–1408PubMedCrossRefGoogle Scholar
  6. 6.
    Dervan PB (1986) Design of sequence-specific DNA-binding molecules. Science 232: 464–471PubMedCrossRefGoogle Scholar
  7. 7.
    Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK et al (1992) Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 89: 9367–9371PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng RP, Gellman SH, DeGrado WF (2001) beta-Peptides: from structure to function. Chem Rev 101:3219–3232PubMedCrossRefGoogle Scholar
  9. 9.
    Seebach D, Ciceri PE, Overhand M, Jaun B, Rigo D, Oberer L, Hommel U, Amstutz R, Widmer H (1996) Probing the helical secondary structure of short-chain beta-peptides. Helv Chim Acta 79:2043–2066CrossRefGoogle Scholar
  10. 10.
    Kritzer JA, Stephens OM, Guarracino DA, Reznik SK, Schepartz A (2005) beta-Peptides as inhibitors of protein–protein interactions. Bioorg Med Chem 13:11–16PubMedCrossRefGoogle Scholar
  11. 11.
    Kumbhani DJ, Sharma GV, Khuri SF, Kirdar JA (2006) Fascicular conduction disturbances after coronary artery bypass surgery: a review with a meta-analysis of their long-term significance. J Card Surg 21:428–434PubMedCrossRefGoogle Scholar
  12. 12.
    Arndt HD, Ziemer B, Koert U (2004) Folding propensity of cyclohexylether-delta-peptides. Org Lett 6:3269–3272PubMedCrossRefGoogle Scholar
  13. 13.
    Trabocchi A, Guarna F, Guarna A (2005) gamma- and delta-Amino acids: synthetic strategies and relevant applications. Curr Org Chem 9:1127–1153CrossRefGoogle Scholar
  14. 14.
    Violette A, Petit MC, Rognan D, Monteil H, Guichard G (2005) Oligourea foldamers as antimicrobial peptidomimetics. Biopolymers 80:516Google Scholar
  15. 15.
    Boeijen A, van Ameijde J, Liskamp RMJ (2001) Solid-phase synthesis of oligourea peptidomimetics employing the Fmoc protection strategy. J Org Chem 66:8454–8462PubMedCrossRefGoogle Scholar
  16. 16.
    Lee HJ, Song JW, Choi YS, Park HM, Lee KB (2002) A theoretical study of conformational properties of N-methyl azapeptide derivatives. J Am Chem Soc 124:11881–11893PubMedCrossRefGoogle Scholar
  17. 17.
    Graybill TL, Ross MJ, Gauvin BR, Gregory JS, Harris AL, Ator MA, Rinker JM, Dolle RE (1992) Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg Med Chem Lett 2: 1375–1380CrossRefGoogle Scholar
  18. 18.
    Li X, Wu YD, Yang D (2008) Alpha-aminoxy acids: new possibilities from foldamers to anion receptors and channels. Acc Chem Res 41:1428–1438PubMedCrossRefGoogle Scholar
  19. 19.
    Nelson JC, Saven JG, Moore JS, Wolynes PG (1997) Solvophobically driven folding of nonbiological oligomers. Science 277:1793–1796PubMedCrossRefGoogle Scholar
  20. 20.
    Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877PubMedCrossRefGoogle Scholar
  21. 21.
    Gellman S (2009) Structure and function in peptidic foldamers. Biopolymers 92:293CrossRefGoogle Scholar
  22. 22.
    Goodman CM, Choi S, Shandler S, DeGrado WF (2007) Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol 3:252–262PubMedCrossRefGoogle Scholar
  23. 23.
    Niu Y, Padhee S, Wu H, Bai G, Harrington L, Burda WN, Shaw LN, Cao C, Cai J (2011) Identification of gamma-AApeptides with potent and broad-spectrum antimicrobial activity. Chem Commun (Camb) 47: 12197–12199CrossRefGoogle Scholar
  24. 24.
    Niu Y, Jones AJ, Wu H, Varani G, Cai J (2011) gamma-AApeptides bind to RNA by mimicking RNA-binding proteins. Org Biomol Chem 9:6604–6609PubMedCrossRefGoogle Scholar
  25. 25.
    Padhee S, Hu Y, Niu Y, Bai G, Wu H, Costanza F, West L, Harrington L, Shaw LN, Cao C, Cai J (2011) Non-hemolytic alpha-AApeptides as antimicrobial peptidomimetics. Chem Commun (Camb) 47:9729–9731CrossRefGoogle Scholar
  26. 26.
    Niu Y, Hu Y, Li X, Chen J, Cai J (2011) [gamma]-AApeptides: design, synthesis and evaluation. New J Chem 35:542–545CrossRefGoogle Scholar
  27. 27.
    Niu Y, Padhee S, Wu H, Bai G, Qiao Q, Hu Y, Harrington L, Burda WN, Shaw LN, Cao C, Cai J (2012) Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J Med Chem 55: 4003–4009PubMedCrossRefGoogle Scholar
  28. 28.
    Bai G, Padhee S, Niu Y, Wang RE, Qiao Q, Buzzeo R, Cao C, Cai J (2012) Cellular uptake of an alpha-AApeptide. Org Biomol Chem 10:1149–1153PubMedCrossRefGoogle Scholar
  29. 29.
    Niu Y, Bai G, Wu H, Wang RE, Qiao Q, Padhee S, Buzzeo R, Cao C, Cai J (2012) Cellular translocation of a gamma-AApeptide mimetic of Tat peptide. Mol Pharm 9:1529–1534Google Scholar
  30. 30.
    Hu Y, Li X, Sebti SM, Chen J, Cai J (2011) Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg Med Chem Lett 21:1469–1471PubMedCrossRefGoogle Scholar
  31. 31.
    Niu Y, Wu H, Huang R, Qiao Q, Constanza F, Wang X, Hu Y, Amin MN, Naguyen A, Zhang J, Haller E, Ma S, Li X, Cai J (2012) Nanorods formed from a new class of peptidomimetics. Macromolecules. doi: 10.1021/ma3015992 Google Scholar
  32. 32.
    Hu Y, Amin MN, Padhee S, Wang R, Qiao Q, Ge B, Li Y, Mathew A, Cao C, Cai J (2012) Lipidated peptidomimetics with improved antimicrobial activity. ACS Med Chem Lett 3:683–686CrossRefGoogle Scholar
  33. 33.
    Wu H, Niu Y, Padhee S, Wang RE, Li Y, Qiao Q, Ge B, Cao C, Cai J (2012) Design and synthesis of unprecedented cyclic gamma-AApeptides for antimicrobial development. Chem Sci 3:2570–2575CrossRefGoogle Scholar
  34. 34.
    Debaene F, Da Silva JA, Pianowski Z, Duran FJ, Winssinger N (2007) Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metallo-proteases as well as tyrosine phosphatases. Tetrahedron 63: 6577–6586CrossRefGoogle Scholar
  35. 35.
    Debaene F, Mejias L, Harris JL, Winssinger N (2004) Synthesis of a PNA-encoded cysteine protease inhibitor library. Tetrahedron 60:8677–8690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Youhong Niu
    • 1
  • Yaogang Hu
    • 1
  • Haifan Wu
    • 1
  • Jianfeng Cai
    • 1
  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations