Solid-Phase Guanidinylation of Peptidyl Amines Compatible with Standard Fmoc-Chemistry: Formation of Monosubstituted Guanidines

  • Nina Bionda
  • Predrag Cudic
Part of the Methods in Molecular Biology book series (MIMB, volume 1081)


With the growing importance of peptides and peptidomimetics as potential therapeutic agents, a continuous synthetic interest has been shown for their modification to provide more stable and bioactive analogs. Among many approaches, peptide/peptidomimetic guanidinylation offers access to analogs possessing functionality with strong basic properties, capable of forming stable intermolecular H-bonds, charge pairing, and cation-π interactions. Therefore, guanidinium functional group is considered as an important pharmacophoric element. Although a number of methods for solid-phase guanidinylation reactions exist, only a few are fully compatible with standard Fmoc solid-phase peptide chemistry.

In this chapter we summarize the solid-phase guanidinylation methods fully compatible with standard Fmoc-synthetic methodology. This includes use of direct guanidinylating reagents such as 1-H-pyrazole-1-carboxamidine and triflylguanidine, and guanidinylation with di-protected thiourea derivatives in combination with promoters such as Mukaiyama’s reagent, N-iodosuccinimide, and N,N′-diisopropylcarbodiimide.

Key words

Guanidinylation Fmoc solid-phase peptide synthesis Depsipeptides Triflylguanidine 1-H-pyrazole-1-carboxamidine Thiourea Mukaiyama’s reagent N-Iodosuccinimide N,N′-Diisopropylcarbodiimide 


  1. 1.
    Katritzky AR, Rogovoy BV (2005) Recent developments in guanidinylating agents. Arkivoc 4:49–87Google Scholar
  2. 2.
    Manimala JC, Eric V, Anslyn EV (2002) Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities. Eur J Org Chem 2002:3909–3922Google Scholar
  3. 3.
    Heys L, Moore CG, Murphy PJ (2000) The guanidine metabolites of and related compounds; Isolation and synthesis. Chem Soc Rev 29:57–67Google Scholar
  4. 4.
    Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135Google Scholar
  5. 5.
    Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: Isolation, structure elucidation and biological activity. J Antibiot 50:220–228Google Scholar
  6. 6.
    Kurusu K, Ohba K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514Google Scholar
  7. 7.
    Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511Google Scholar
  8. 8.
    Yamamoto T, Hori M, Watanabe I, Tsutsi H, Harada K, Ikeda S, Ohtaka H (1997) Structural requirements for potential Na/H exchange inhibitors obtained from quantitative structure-activity relationships of monocyclic and bicyclic aroylguanidines. Chem Pharm Bull 45:1282–1286Google Scholar
  9. 9.
    Yamamoto T, Hori M, Watanabe I, Tsutsi H, Harada K, Ikeda S, Maruo T, Ohtaka H (1998) Synthesis and quantitative structure-activity relationships of N-(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl)guanidines as Na/H exchange inhibitors. Chem Pharm Bull 46:1716–1723Google Scholar
  10. 10.
    Adang AE, Lucas H, de Man AP, Engh RA, Grootenhuis PD (1998) Novel acylguanidine containing thrombin inhibitors with reduced basicity at the P1 moiety. Bioorg Med Chem Lett 8:3603–3608Google Scholar
  11. 11.
    Sainlos M, Belmont P, Vigneron JP, Lehn P, Lehn JM (2003) Aminoglycoside-derived cationic lipids for gene transfection: synthesis of Kanamycin A derivatives. Eur J Org Chem 2003:2764–2774Google Scholar
  12. 12.
    Sainlos M, Hauchecorne M, Oudrhir IN, Zertal-Zidani S, Aissaoui A, Vigneron JP, Lehn JM, Lehn P (2005) Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem 6:1023–1033Google Scholar
  13. 13.
    Schmidt N, Mishra A, Lai GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813Google Scholar
  14. 14.
    Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15–16):850–860Google Scholar
  15. 15.
    El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22Google Scholar
  16. 16.
    Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472Google Scholar
  17. 17.
    Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325Google Scholar
  18. 18.
    Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840Google Scholar
  19. 19.
    Wu Z, de Leeuw E, Ericksen B, Lu W (2005) Why is the Arg5-Glu13 salt bridge conserved in mammalian alpha-defensins? J Biol Chem 280:43039–43047Google Scholar
  20. 20.
    Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88Google Scholar
  21. 21.
    Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536Google Scholar
  22. 22.
    Stawikowski M, Cudic P (2006) A novel strategy for the solid-phase synthesis of cyclic lipodepsipeptides. Tetrahedron Lett 47:8587–8590Google Scholar
  23. 23.
    Bionda N, Stawikowski M, Stawikowska R, Cudic M, López-Vallejo F, Treitl D, Medina-Franco J, Cudic P (2012) Effects of cyclic lipodepsipeptide structural modulation on stability, antibacterial activity, and human cell toxicity. ChemMedChem 7:871–882Google Scholar
  24. 24.
    Robinson S, Roskamp EJ (1997) Solid phase synthesis of guanidines. Tetrahedron 53:6697–6705Google Scholar
  25. 25.
    Kowalski J, Lipton MA (1996) Solid phase synthesis of a diketopiperazine catalyst containing the unnatural amino acid (S)-norarginine. Tetrahedron Lett 37:5839–5840Google Scholar
  26. 26.
    Yong YF, Kowalski JA, Lipton MA (1997) Facile and efficient guanidinylation of amines using thioureas and mukaiyama’s reagent. J Org Chem 62:1540–1542Google Scholar
  27. 27.
    Yong YF, Kowalski JA, Thoen JC, Lipton MA (1999) A new reagent for solid and solution phase synthesis of protected guanidines from amines. Tetrahedron Lett 40:53–56Google Scholar
  28. 28.
    Bernatowicz MS, Wu Y, Matsueda GR (1992) 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanidinylation of amines and its application to peptide synthesis. J Org Chem 57:2497–2502Google Scholar
  29. 29.
    Zakhariev S, Szekely Z, Guarnaccia C, Antcheva N, Pongor S (2000) A highly effective method for synthesis of N ω − substituted arginines. Peptides for new millenium. In: Fields GB, Tam JP, Barany G (ed) Proceedings of the 16th American peptide symposium. Kluver Academic, Dordrecht, pp 74–75Google Scholar
  30. 30.
    Thamm P, Kolobeck W, Musiol HJ, Moroder L (2004) Other side-chain protections, guanidino group. In: Goodman M et al (eds) Houben-Weyl: Synthesis of peptides and peptidomimetics, vol E22a. Georg Thieme Verlag, New york, pp 315–333Google Scholar
  31. 31.
    Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Peptide Protein Res 35:161–214Google Scholar
  32. 32.
    Schneider SE, Bishop PA, Salazar MA, Bishop OA, Anslyn EV (1998) Solid phase synthesis of oligomeric guanidiniums. Tetrahedron 54:15063–15086Google Scholar
  33. 33.
    Drake B, Patek M, Lebl M (1994) A convenient preparation of monosubstituted N,N′-di(Boc)-protected guanidines. Synthesis 6:579–582Google Scholar
  34. 34.
    Feichtinger K, Zapf C, Sings HL, Goodman M (1998) Diprotected triflylguanidines: a new class of guanidinylation reagents. J Org Chem 63:3804–3805Google Scholar
  35. 35.
    Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M (1998) Triurethane-protected guanidines and triflyldiurethane-protected guanidines: new reagents for guanidinylation reactions. J Org Chem 63:8432–8439Google Scholar
  36. 36.
    Santana AG, Francisco CG, Suarez E, Gonzalez CC (2010) Synthesis of guanidines from azides: a general and straightforward methodology in carbohydrate chemistry. J Org Chem 75:5371–5374Google Scholar
  37. 37.
    Poss MA, Iwanowicz E, Reid JA, Lin J, Gu Z (1992) A mild and efficient method for the preparation of guanidines. Tetrahedron Lett 33:5933–5936Google Scholar
  38. 38.
    Levallet C, Lerpiniere J, Ko SY (1997) The HgCl2-promoted guanidinylation reaction: the scope and limitations. Tetrahedron 53:5291–5304Google Scholar
  39. 39.
    Ohara K, Vasseur JJ, Smietana M (2009) NIS-promoted guanidinylation of amines. Tetrahedron Lett 50:1463–1465Google Scholar
  40. 40.
    Kim KS, Qian L (1993) Improved method for the preparation of guanidines. Tetrahedron Lett 34:7677–7680Google Scholar
  41. 41.
    Shibanuma T, Shiono M, Mukaiyama T (1977) A convenient method for the preparation of carbodiimides using 2-chloropyridinium salt. Chem Lett 5:575–576Google Scholar
  42. 42.
    Convers E, Tye H, Whittaker M (2004) Preparation and evaluation of a polymer-supported Mukaiyama reagent. Tetrahedron Lett 45:3401–3404Google Scholar
  43. 43.
    Ley K, Eholzer U (1966) S-amination of thioureas and thiourethanes. Angew Chem Int Ed 5:674–674Google Scholar
  44. 44.
    Ottmann G, Hooks H (1967) Preparation of S-aminoisothioureas by nucleophilic substitution of S-chloroisothiocarbamoyl chlorides. Angew Chem Int Ed 6:1072–1073Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nina Bionda
    • 1
  • Predrag Cudic
    • 1
  1. 1.Torrey Pines Institute for Molecular StudiesPort St. LucieUSA

Personalised recommendations