Hantzsch Based Macrocyclization Approach for the Synthesis of Thiazole Containing Cyclopeptides

  • Adel Nefzi
Part of the Methods in Molecular Biology book series (MIMB, volume 1081)


An innovative macrocyclization approach via high-yielding solid-phase intramolecular thioalkylation reaction is described. The reaction of S-nucleophiles with newly generated N-terminal 4-chloromethyl thiazoles leads to the desired cyclic products in high purities and good yields.

Key words

Cyclic peptides Thioalkylation Solid-phase synthesis Parallel synthesis 4-Chloromethyl thiazoles 


  1. 1.
    Lambert JN, Mitchell JP, Roberts KD (2001) The synthesis of cyclic peptides. J Chem Soc Perkin Trans 1:471–484CrossRefGoogle Scholar
  2. 2.
    Hruby VJ, Balse PM (2000) Conformational and topographical considerations in designing agonist peptidomimetics from peptides leads. Curr Med Chem 7:945–970PubMedCrossRefGoogle Scholar
  3. 3.
    Hruby VJ, Agnes RS (1999) Conformation activity relationships of opioid peptides with selective activities at opioid receptors. Biopolymers 51:391–410PubMedCrossRefGoogle Scholar
  4. 4.
    Jones RM, Bulaj G (2000) Combinatorial chemistry at a cone snail’s pace. Curr Opin Drug Discov Dev 3:141–154Google Scholar
  5. 5.
    Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12:292–296PubMedCrossRefGoogle Scholar
  6. 6.
    Hruby VJ (2002) Designing peptide receptor agonists and antagonists. Nat Rev Drug Discov 1:847–858PubMedCrossRefGoogle Scholar
  7. 7.
    Schiller PW (1993) Development of opioid peptides analogs as pharmacological tools and as potential drugs. Handb Exp Pharmacol 104(1) (Opioids I):681–710Google Scholar
  8. 8.
    Fang W-J, Cui Y, Murray TF, Aldrich JV (2009) Design, synthesis, and pharmalogical activities of dynorphin A analogues cyclized by ring-closing metathesis. J Med Chem 52:5619–5625PubMedCrossRefGoogle Scholar
  9. 9.
    Berezowska I, Lemieux C, Chung NN, Wilkes BC, Schiller PW (2009) Dicarba analogues of the cyclic enkephalin peptides H-Tyr-c-[D-Cys-Gly-Phe-D9or L)-Cys]NH2 retain high opioid activity. Chem Biol Drug Des 74: 329–334PubMedCrossRefGoogle Scholar
  10. 10.
    Purington LC, Pogozheva ID, Traynor JR, Mosberg HI (2009) Pentapeptides displaying mu opioid receptor agonist and sigma opioid receptor partial agonist/antagonist properties. J Med Chem 52:7724–7731PubMedCrossRefGoogle Scholar
  11. 11.
    Mollica A, Guardiani G, Davis P, Ma S, Porreca F, Lai J, Manina L, Sobolev AP, Hruby VJ (2007) Synthesis of stable and potent sigma/mu opioid peptides: analogues of H-Tyr-c[D-Cys-Gly-Phe-D-Cys]-OH by ring closing metathesis. J Med Chem 50:3138–3142PubMedCrossRefGoogle Scholar
  12. 12.
    Weltrowska G, Lu Y, Lemieux C, Chung NN, Schiller PW (2004) A novel cyclic enkephalin analogue with potent opioid antagonist activity. Bioorg Med Chem Lett 14:4731–4733PubMedCrossRefGoogle Scholar
  13. 13.
    Mollica A, Davis P, Ma S, Porreca F, Lai J, Hruby VJ (2006) Synthesis and biological activity of the first cyclic biphalin analogues. Bioorg Med Chem Lett 16:367–372PubMedCrossRefGoogle Scholar
  14. 14.
    Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov 7:608–624PubMedCrossRefGoogle Scholar
  15. 15.
    Blout ER (1981) Cyclic peptides: Past, present, and future. Biopolymers 20:1901–1912CrossRefGoogle Scholar
  16. 16.
    Feng Y, Pattarawarapan M, Wang Z, Burgess K (1999) Solid-phase SN2 macrocyclization reactions to form β-turn mimics. Org Lett 1: 121–124PubMedCrossRefGoogle Scholar
  17. 17.
    Roberts KD, Lambert JN, Ede NJ, Bray AM (2006) Efficient methodology for the cyclization of linear peptide libraries via intramolecular S-alkylation using multipin solid phase peptide synthesis. J Pept Sci 12:525–532PubMedCrossRefGoogle Scholar
  18. 18.
    Dixon MJ, Nathubhai A, Andersen OA, van Aalten DMF, Eggleston IM (2009) An efficient synthesis of argifin: a natural product chitinase inhibitor with chemotherapeutic potential. Org Biomol Chem 7:259–268PubMedCrossRefGoogle Scholar
  19. 19.
    Romanovskis P, Spatola AF (1988) Preparation of head-to-tail cyclic peptides via side-chain attachment: implications for library synthesis. J Pept Res 52:356CrossRefGoogle Scholar
  20. 20.
    Alsina J, Jensen KJ, Albericio F, Barany G (1999) Solid-phase synthesis with tris(alkoxy)benzyl backbone amide linkage (BAL). Chem Eur J 5:2787–2795CrossRefGoogle Scholar
  21. 21.
    Craik DJ, Cemazar M, Daly NL (2007) The chemistry and biology of cyclotides. Curr Opin Drug Discov Dev 10:176–184Google Scholar
  22. 22.
    Pons M, Albericio F, Royo M, Giralt E (2000) Disulfide bonded cyclic peptide dimers and trimers: an easy entry to high symmetry peptide frameworks. Synlett 2:172–181CrossRefGoogle Scholar
  23. 23.
    Annis I, Chen L, Barany G (1998) Novel solid-phase reagents for facile formation of intramolecular disulfide bridges in peptides under mild conditions. J Am Chem Soc 120:7226–7238CrossRefGoogle Scholar
  24. 24.
    Feliu L, Planas M (2005) Cyclic peptides containing biaryl and biaryl ether linkages. Int J Pept Res Ther 11:53–97CrossRefGoogle Scholar
  25. 25.
    Li P, Roller PP, Xu J (2002) Current synthetic approaches to peptide and peptidomimetic cyclization. Curr Org Chem 6:411–440CrossRefGoogle Scholar
  26. 26.
    Kaiser M, Siciliano C, Assfalg-Machleidt I, Groll M, Milbradt AG, Moroder L (2003) Synthesis of a TMC-95A ketomethylene analogue by cyclization via intramolecular Suzuki coupling. Org Lett 5:3435–3437PubMedCrossRefGoogle Scholar
  27. 27.
    Blackwell HE, Grubbs RH (1988) Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew Chem Int Ed 37:3281–3284CrossRefGoogle Scholar
  28. 28.
    Reichwein JF, Versluis C, Liskamp RMJ (2000) Synthesis of cyclic peptides by ring-closing metathesis. J Org Chem 65:6187–6195PubMedCrossRefGoogle Scholar
  29. 29.
    Boyle TP, Bremner JB, Coates J, Deadman J, Keller PA, Pyne SG, Rhodes DI (2008) New cyclic peptides via ring-closing metathesis reactions and their anti-bacterial activities. Tetrahedron 64:11270–11290CrossRefGoogle Scholar
  30. 30.
    Feng Y, Burgess K (1999) Solid phase SNAr macrocyclizations to give turn-extended-turn peptidomimetics. Chem Eur J 5:3261–3272CrossRefGoogle Scholar
  31. 31.
    Grieco P, Cai M, Liu L, Mayorov A, Chandler K, Trivedi D, Lin G, Campiglia P, Novellino E, Hruby VJ (2008) Design and microwave-assisted synthesis of novel macrocyclic peptides active at melanocortin receptors: discovery of potent and selective hMC5R receptor antagonists. J Med Chem 51:2701–2707PubMedCrossRefGoogle Scholar
  32. 32.
    Derbal S, Ghedira K, Nefzi A (2010) Parallel synthesis of 19-membered ring macro-heterocycles via intramolecular thioether formation. Tetrahedron Lett 51:3607–3609CrossRefGoogle Scholar
  33. 33.
    Giulianotti M, Nefzi A (2003) Efficient approach for the diversity-oriented synthesis of macro-heterocycles on solid-support. Tetrahedron Lett 44:5307–5309CrossRefGoogle Scholar
  34. 34.
    Jung G (1991) Lantibiotics—ribosomally synthesized biologically active polypeptides containing sulfide bridges and a, b,-didehydroamino acids. Angew Chem Int Ed Engl 30: 1051–1068CrossRefGoogle Scholar
  35. 35.
    Campiglia P, Gomez-Monterrey I, Longobardo L, Lama T, Novellino E, Grieco P (2004) A novel route to synthesize Freidinger lactams by microwave irradiation. Tetrahedron Lett 45:1453–1456CrossRefGoogle Scholar
  36. 36.
    Jack RW, Jung G (2000) Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr Opin Chem Biol 4:310–317PubMedCrossRefGoogle Scholar
  37. 37.
    Kaiser D, Jack RW, Jung G (1998) Lantibiotics and microcins: novel posttranslational modifications of polypeptides. Pure Appl Chem 70:97–104CrossRefGoogle Scholar
  38. 38.
    Crescenza A, Botta M, Corelli F, Santini A, Tafi A (1999) Cyclic dipeptides. Synthesis of methyl (R)-6-[(tert-butoxycarbonyl)amino]-4,5,6,7- tetrahydro-2-methyl-5-oxo-1,4-thiazepine-3-carboxylate and its hexahydro analogues: elaboration of a novel dual ACE/NEP inhibitor. J Org Chem 64:3019–3025PubMedCrossRefGoogle Scholar
  39. 39.
    Olson GL, Bolin DR, Bonner MP, Bos M, Cook CM, Fry DC, Graves BJ, Hatada M, Hill DE, Kahn M, Madison VS, Rusiecki VK, Sarabu R, Sepinwall J, Vincent GP, Voss ME (1993) Concepts and progress in the development of peptide mimetics. J Med Chem 36:3039–3046PubMedCrossRefGoogle Scholar
  40. 40.
    MacDonald M, Aube J (2001) Approaches to cyclic peptide beta-turn mimics. Curr Org Chem 5:417–421CrossRefGoogle Scholar
  41. 41.
    Suat Kee K, Jois SDS (2003) Design of β-turn based therapeutic agents. Curr Pharm Des 9:1209–1212PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang J, Xiong C, Ying J, Wang W, Hruby V (2003) Stereoselective synthesis of novel dipeptide β-turn mimetics targeting melanocortin peptide receptors. J Org Lett 5: 3115–3118CrossRefGoogle Scholar
  43. 43.
    Jin Z (2003) Muscarine, imidazole, oxazole, and thiazole alkaloids. Nat Prod Rep 20: 584–605PubMedCrossRefGoogle Scholar
  44. 44.
    Bertram A, Blake AJ, de Turiso F, Hannam JS, Jolliffe KA, Pattenden G, Skae M (2003) Concise synthesis of stereodefined, thiazole-containing cyclic hexa- and octapeptide relatives of the Lissoclinums, via cyclooligomerisation reactions. Tetrahedron 59:6979–6990CrossRefGoogle Scholar
  45. 45.
    Jin Z (2006) Imidazole, oxazole and thiazole alkaloids. Nat Prod Rep 23:464–496PubMedCrossRefGoogle Scholar
  46. 46.
    Aulakh VS, Ciufolini MA (2011) Total synthesis and complete structural assignment of thiocillin I. J Am Chem Soc 133:5900–5904PubMedCrossRefGoogle Scholar
  47. 47.
    Sanfilippo PJ, Jetter MC, Cordova R, Noe RA, Chourmousis E, Lau CY, Wang E (1995) Novel thiazole based heterocycles as inhibitors of LFA-1/ICAM-1 mediated cell adhesion. J Med Chem 38:1057–1059PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki S, Yonezawa Y, Shin C (2004) Useful synthesis of fragment A–C–D of a thiostrepton-type macrocylic antibiotic, thiocilline I. Chem Lett 33:814–815CrossRefGoogle Scholar
  49. 49.
    Houghten RA (1985) General method for the rapid solid-phase synthesis of larger numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82:5131–5135PubMedCrossRefGoogle Scholar
  50. 50.
    Fields GB, Noble RL (1999) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214CrossRefGoogle Scholar
  51. 51.
    Hantzsch AR, Weber JH (1987) Ueber verbindungen des thiazols pyridins der thiophenreihe. Ber Dtsch Chem Gen 20: 3118–3132CrossRefGoogle Scholar
  52. 52.
    Garcia-Egido E, Wong SYF, Warrington BH (2002) A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. Lab Chip 2:31–33PubMedCrossRefGoogle Scholar
  53. 53.
    Lin PY, Hou RS, Wang HM, Kang IJ, Chen LC (2009) Efficient synthesis of 2-aminothiazoles and fanetizole in liquid PEG-400 at ambient conditions. J Chin Chem Soc 56:455–458Google Scholar
  54. 54.
    Arutyunyan S, Nefzi A (2010) Synthesis of chiral polyaminothiazoles. J Comb Chem 12:315–317PubMedCrossRefGoogle Scholar
  55. 55.
    Gunnarsson K, Grehn L, Ragnarsson U (1988) Synthesis and properties of N'-di-Ter-butoxycarbonyl and N-benzyloxycarbonyl tertbutoxycarbonyl amino acids. Angew Chem Int Ed Engl 27:400–401CrossRefGoogle Scholar
  56. 56.
    Gunnarsson K, Ragnarsson U (1990) Preparation and properties of N'-di-tertbutoxycarbonyl amino acids. Applicability in the synthesis of Leu-enkephalin. Acta Chem Scand 44:944–951CrossRefGoogle Scholar
  57. 57.
    Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Adel Nefzi
    • 1
  1. 1.Torrey Pines Institute for Molecular StudiesPort St. LucieUSA

Personalised recommendations