Skip to main content

Quantifying Lipid-Protein Interaction by Fluorescence Correlation Spectroscopy (FCS)

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence correlation spectroscopy (FCS) is a powerful method to investigate molecular interactions based on the variation of diffusion properties at the single-molecule level. This technique allows studying quantitatively the interaction of fluorescently labeled proteins/peptides with lipid vesicles. Here, we describe how to acquire and analyze FCS partition data in order to accurately determine the protein/peptide partition coefficients between the aqueous and lipid phases. It is shown that the recovery of unbiased partition coefficients from FCS partition curves (fractional amplitude of the bound species versus lipid concentration) requires considering explicitly the Poissonian loading of the lipid vesicles with the fluorescently labeled protein in order to account for the variable liposome brightness in each sample. Additionally, the impact of a trace amount of a fluorescent non-binding component on the partition curves determined by FCS is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rigler R, Elson ES (eds) (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, Berlin

    Google Scholar 

  2. Hess ST, Huang SH, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3):697–705

    Article  PubMed  CAS  Google Scholar 

  3. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys 36:151–169

    Article  CAS  Google Scholar 

  4. Thompson NL (1991) Fluorescence correlation spectroscopy. In: Lakowicz J (ed) Topics in fluorescence spectroscopy techniques, vol 1. Plenum Press, New York, NY, pp 337–378

    Chapter  Google Scholar 

  5. Santos NC, Prieto M, Castanho M (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612(2):123–135

    Article  PubMed  CAS  Google Scholar 

  6. Rusu L, Gambhir A, McLaughlin S, Rädler J (2004) Fluorescence correlation spectroscopy studies of peptide and protein binding to phospholipid vesicles. Biophys J 87(2):1044–1053

    Article  PubMed  CAS  Google Scholar 

  7. Melo AM, Prieto M, Coutinho A (2011) The effect of variable liposome brightness on quantifying lipid-protein interactions using fluorescence correlation spectroscopy. Biochim Biophys Acta-Biomembr 1808(10):2559–2568

    Article  CAS  Google Scholar 

  8. Yu LL, Tan MY, Ho B et al (2006) Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta 556(1):216–225

    Article  PubMed  CAS  Google Scholar 

  9. Al-Soufi W, Reija B, Novo M et al (2005) Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin. J Am Chem Soc 127(24):8775–8784

    Article  PubMed  CAS  Google Scholar 

  10. Xu H, Frank J, Trier U et al (2001) Interaction of fluorescence labeled single-stranded DNA with hexameric DNA-helicase RepA: a photon and fluorescence correlation spectroscopy study. Biochemistry 40(24):7211–7218

    Article  PubMed  CAS  Google Scholar 

  11. Krouglova T, Vercammen J, Engelborghs Y (2004) Correct diffusion coefficients of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and paclitaxel. Biophys J 87(4):2635–2646

    Article  PubMed  CAS  Google Scholar 

  12. Nath S, Meuvis J, Hendrix J et al (2010) Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98(7):1302–1311

    Article  PubMed  CAS  Google Scholar 

  13. Reija B, Monterroso B, Jimenez M et al (2011) Development of a homogeneous fluorescence anisotropy assay to monitor and measure FtsZ assembly in solution. Anal Biochem 418(1):89–96

    Article  PubMed  CAS  Google Scholar 

  14. Haugland RP (ed) (2005) Handbook of fluorescent probes and research chemicals, 10th edn. Molecular Probes, Eugene, OR

    Google Scholar 

  15. Hope MJ, Bally MB, Mayer LD et al (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40(2–4):89–107

    Article  Google Scholar 

  16. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858(1):161–168

    Article  PubMed  CAS  Google Scholar 

  17. Posokhov YO, Rodnin MV, Lu L, Ladokhin AS (2008) Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching. Biochemistry 47(18):5078–5087

    Article  PubMed  CAS  Google Scholar 

  18. McClare CWF (1971) An accurate and convenient organic phosphorus assay. Anal Biochem 39(2):527–530

    Article  PubMed  CAS  Google Scholar 

  19. Gendron PO, Avaltroni F, Wilkinson KJ (2008) Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J Fluoresc 18(6):1093–1101

    Article  PubMed  CAS  Google Scholar 

  20. Pace CN, Vajdos F, Fee L et al (1995) How to measure and predict the molar absorption-coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  PubMed  CAS  Google Scholar 

  21. Elbaum-Garfinkle S, Ramlall T, Rhoades E (2010) The role of the lipid bilayer in tau aggregation. Biophys J 98(11):2722–2730

    Article  PubMed  CAS  Google Scholar 

  22. Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (Project PTDC/QUI-BIQ/099947/2008, Project PTDC/QUI-BIQ/112067/2009 and Ph.D. grant SFRH/BD/61723/2009 to A.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Melo, A.M., Prieto, M., Coutinho, A. (2014). Quantifying Lipid-Protein Interaction by Fluorescence Correlation Spectroscopy (FCS). In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics