Skip to main content

Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence correlation spectroscopy (FCS) can add dynamic molecular information to images of live cells. For example, a confocal laser scanning microscope (CLSM) equipped with an accessory FCS unit provides the possibility to first image the spatial distribution of a fluorescent protein before probing its mobility within defined regions of interest. Whereas specific protein–protein interactions are preferably assayed with a dual-color approach, single-color FCS can still provide valuable information about the size of the diffusing entities and potential interactions with other, nonfluorescent, proteins or subcellular structures. Because number fluctuations are measured, the concentrations of freely diffusing complexes and their state of oligomerization are accessible.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89

    Article  PubMed  CAS  Google Scholar 

  2. Bacia K, Schwille P (2007) Practical guidelines for dual-colour fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856

    Article  PubMed  CAS  Google Scholar 

  3. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166

    Article  PubMed  CAS  Google Scholar 

  4. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41:697–705

    Article  PubMed  CAS  Google Scholar 

  5. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  PubMed  CAS  Google Scholar 

  6. Weidemann T, Wachsmuth M, Tewes M et al (2002) Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol 3:49–61

    Article  CAS  Google Scholar 

  7. Widengren J, Rigler R (1998) Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell Mol Biol (Noisy-le-Grand) 44:857–879

    CAS  Google Scholar 

  8. Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379

    Article  CAS  Google Scholar 

  9. Hofmann SR, Lam AQ, Frank S et al (2004) Jak3-independent trafficking of the common gamma chain receptor subunit: chaperone function of Jaks revisited. Mol Cell Biol 24:5039–5049

    Article  PubMed  CAS  Google Scholar 

  10. Ohrt T, Merkle D, Birkenfeld K et al (2006) In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res 34:1369–1380

    Article  PubMed  CAS  Google Scholar 

  11. Wachsmuth M, Weidemann T, Muller G et al (2003) Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84:3353–3363

    Article  PubMed  CAS  Google Scholar 

  12. Weidemann T, Wachsmuth M, Knoch TA et al (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334:229–240

    Article  PubMed  CAS  Google Scholar 

  13. Petrov E, Schwille P (2008) State of the art and novel trends in fluorescence correlation spectroscopy. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements ii: bioanalytical and biomedical applications. Springer, Berlin. ISBN 978-3-540-70570-3

    Google Scholar 

  14. Choi W, Fang-Yen C, Badizadegan K et al (2007) Tomographic phase microscopy. Nat Methods 4:717–719

    Article  PubMed  CAS  Google Scholar 

  15. Lide DR (2004) Handbook of chemistry and physics. CRC, Bota Raton, FL. pp 8–66

    Google Scholar 

  16. Enderlein J, Gregor I, Patra D et al (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6:2324–2336

    Article  PubMed  CAS  Google Scholar 

  17. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. Chemphyschem 6:164–170

    Article  PubMed  CAS  Google Scholar 

  18. Nishimura G, Kinjo M (2004) Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76:1963–1970

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  20. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689

    Article  PubMed  CAS  Google Scholar 

  21. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518–3524

    Article  PubMed  CAS  Google Scholar 

  22. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95:13573–13578

    Article  PubMed  CAS  Google Scholar 

  23. Weber W, Helms V, McCammon JA, Langhoff PW (1999) Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc Natl Acad Sci USA 96:6177–6182

    Article  PubMed  CAS  Google Scholar 

  24. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  PubMed  CAS  Google Scholar 

  25. Petrov EP, Ohrt T, Winkler RG, Schwille P (2006) Diffusion and segmental dynamics of double-stranded DNA. Phys Rev Lett 97:258101

    Article  PubMed  CAS  Google Scholar 

  26. Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Wolfgang Staroske for providing his Matlab fitting script, Karin Crell, and Ellen Sieber for their assistance in cell culture.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weidemann, T. (2014). Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics