Skip to main content

Subpicosecond Kerr-Gate Spectrofluorometry

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

This chapter describes an experimental layout for time and spectrally resolved fluorescence measurements with femtosecond time resolution based on Kerr gating. The combination of data recorded using different Kerr media allows a temporal dynamic range from ~100 fs to several nanoseconds. Simultaneous analysis of multiple datasets is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Laptenok SP, van Stokkum IHM, Borst JW et al (2012) Disentangling picosecond events that complicate the quantitative use of the calcium sensor YC3.60. J Phys Chem B 116:3013–3020

    Article  PubMed  CAS  Google Scholar 

  3. van Oort B, Eremeeva EV, Koehorst RBM et al (2009) Picosecond fluorescence relaxation spectroscopy of the calcium-discharged photoproteins aequorin and obelin. Biochemistry 48:10486–10491

    Article  PubMed  Google Scholar 

  4. van Stokkum IHM, van Oort B, van Mourik F et al (2008) (Sub)-picosecond spectral evolution of fluorescence studied with a synchroscan streak-camera system and target analysis. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis, vol II. Springer, Dordrecht, pp 223–240

    Chapter  Google Scholar 

  5. Cannizzo A, Bräm O, Zgrablic G et al (2007) Femtosecond fluorescence upconversion setup with broadband detection in the ultraviolet. Opt Lett 32:3555–3557

    Article  PubMed  CAS  Google Scholar 

  6. Zhang X-X, Würth C, Zhao L et al (2011) Femtosecond broadband fluorescence upconversion spectroscopy: improved setup and photometric correction. Rev Sci Instrum 82:063108

    Article  PubMed  Google Scholar 

  7. Schanz R, Kovalenko SA, Kharlanov V et al (2001) Broad-band fluorescence upconversion for femtosecond spectroscopy. Appl Phys Lett 79:566–568

    Article  CAS  Google Scholar 

  8. Nakamura R, Kanematsu Y (2004) Femtosecond spectral snapshots based on electronic optical Kerr effect. Rev Sci Instrum 75:636–645

    Article  CAS  Google Scholar 

  9. Schmidt B, Laimgruber S, Zinth W et al (2003) A broadband Kerr shutter for femtosecond fluorescence spectroscopy. Appl Phys B 76:809–814

    Article  CAS  Google Scholar 

  10. Arzhantsev S, Maroncelli M (2005) Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating. Appl Spectrosc 59:206–226

    Article  PubMed  CAS  Google Scholar 

  11. Duguay MA (1969) An ultrafast light gate. Appl Phys Lett 15:192–194

    Article  CAS  Google Scholar 

  12. Duguay MA, Hansen JW (1969) Direct measurement of picosecond lifetimes. Opt Commun 1:254–256

    Article  CAS  Google Scholar 

  13. Cerullo G, de Silvestri S (2003) Ultrafast optical parametric amplifiers. Rev Sci Instrum 74:1–18

    Article  CAS  Google Scholar 

  14. Yan L, Si J, Yan Y et al (2011) Pump power dependence of femtosecond two-color optical Kerr shutter measurements. Opt Express 19:11196–11201

    Article  PubMed  CAS  Google Scholar 

  15. Weigel A, Pfaffe M, Sajadi M et al (2012) Barrierless photoisomerisation of the “simplest cyanine”: joining computational and femtosecond optical spectroscopies to trace the full reaction path. Phys Chem Chem Phys 14:13350–13364

    Article  PubMed  CAS  Google Scholar 

  16. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657:82–104

    Article  PubMed  Google Scholar 

  17. van Wilderen LJGW, Lincoln CN, van Thor JJ (2011) Modelling multi-pulse population dynamics from ultrafast spectroscopy. PLoS One 6:e17373

    Article  PubMed  Google Scholar 

  18. Snellenburg JJ, Laptenok SP, Seger R et al (2012) Glotaran: a Java—based graphical user interface for the R-package TIMP. J Stat Soft 49:1–23

    Google Scholar 

  19. Roth NJL, Craig AC (1974) Predicted observable fluorescent lifetimes of several cyanines. J Phys Chem 78:1154–1155

    Article  CAS  Google Scholar 

  20. Nuernberger P, Vogt G, Gerber G et al (2006) Femtosecond study on the isomerization dynamics of NK88. I. Ground-state dynamics after photoexcitation. J Chem Phys 125:44512

    Article  PubMed  Google Scholar 

  21. Vogt G, Nuernberger P, Gerber G et al (2006) Femtosecond study on the isomerization dynamics of NK88. II. Excited-state dynamics. J Chem Phys 125:44513

    Article  PubMed  Google Scholar 

  22. Pal MK, Ghosh JK (1994) Energy transfer and formation of exciplex between thiacyanine and acridine orange facilitated by anionic biopolymers and synthetic polymers. J Photochem Photobiol A 78:31–37

    Article  CAS  Google Scholar 

  23. Thomas MS, Nuñez V, Upadhyayula S et al (2010) Kinetics of bacterial fluorescence staining with 3,3′-diethylthiacyanine. Langmuir 26:9756–9765

    Article  PubMed  CAS  Google Scholar 

  24. Mammone JF, Sharma SK, Nicol M (1980) Raman spectra of methanol and ethanol at pressures up to 100 kbar. J Phys Chem 84:3130–3134

    Article  CAS  Google Scholar 

  25. Brückner C, Notni G, Tünnermann A (2010) Optimal arrangement of 90° off-axis parabolic mirrors in THz setups. Optik (Jena) 121:113–119

    Article  Google Scholar 

  26. Schmidt A, Chiesa M, Chen X et al (2008) An optical pump-probe technique for measuring the thermal conductivity of liquids. Rev Sci Instrum 79:064902

    Article  PubMed  Google Scholar 

  27. Ganeev RA, Ryasnyanskiĭ AI, Kuroda H (2006) Nonlinear optical characteristics of carbon disulfide. Opt Spectrosc 100:108–118

    Article  CAS  Google Scholar 

  28. Thomsen CL, Madsen D, Thøgersen J et al (1999) Femtosecond spectroscopy of the dissociation and geminate recombination of aqueous CS2. J Chem Phys 111:703

    Article  Google Scholar 

  29. Press WH, Teukolsky SA, Vetterling WT et al (2007) Numerical recipes 3rd Edition: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  30. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Laptenok, S.P., Nuernberger, P., Lukacs, A., Vos, M.H. (2014). Subpicosecond Kerr-Gate Spectrofluorometry. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics