Morphological Analysis of Cell Growth Mutants in Physcomitrella

  • Jeffrey P. Bibeau
  • Luis Vidali
Part of the Methods in Molecular Biology book series (MIMB, volume 1080)


This protocol describes a quantitative analysis of the morphology of small plants from the moss Physcomitrella patens. The protocol can be used for the analysis of growth phenotypes produced by transient RNA interference or for the analysis of stable mutant plants. Information is presented to guide the investigator in the choice of vectors and basic conditions to perform transient RNA interference in moss. Detailed directions and examples for fluorescence image acquisition of small regenerating moss plants are provided. Instructions for the use of an ImageJ-based macro for quantitative morphological analysis of these plants are also provided.

Key words

Transient transformation RNAi Physcomitrella patens Morphological analysis Solidity Convex hull Tip growth Cell polarization ImageJ Plant cell growth Cytoskeleton Protonema 


  1. 1.
    Cove D, Bezanilla M, Harries P et al (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520PubMedCrossRefGoogle Scholar
  2. 2.
    Vidali L, Bezanilla M (2012) Physcomitrella patens: a model for tip cell growth and differentiation. Curr Opin Plant Biol. 15:625–631Google Scholar
  3. 3.
    Augustine RC, Vidali L, Kleinman KP et al (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J 54:863–875PubMedCrossRefGoogle Scholar
  4. 4.
    van Gisbergen PA, Li M, Wu SZ et al (2012) Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. J Cell Biol 198:235–250PubMedCrossRefGoogle Scholar
  5. 5.
    Vidali L, Augustine RC, Kleinman KP et al (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell 19:3705–3722PubMedCrossRefGoogle Scholar
  6. 6.
    Vidali L, Burkart GM, Augustine RC et al (2010) Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–1882PubMedCrossRefGoogle Scholar
  7. 7.
    Vidali L, van Gisbergen PAC, Guerin C et al (2009) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc Natl Acad Sci USA 106: 13341–13346PubMedGoogle Scholar
  8. 8.
    Augustine RC, Pattavina KA, Tuzel E et al (2011) Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23:3696–3710PubMedCrossRefGoogle Scholar
  9. 9.
    Wu SZ, Ritchie JA, Pan AH et al (2011) Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens. Mol Plant 4:909–921PubMedCrossRefGoogle Scholar
  10. 10.
    Liu YC, Vidali L (2011) Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. J Vis Exp 50:e2560Google Scholar
  11. 11.
    Schaefer D, Zryd JP, Knight CD et al (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424PubMedCrossRefGoogle Scholar
  12. 12.
    Bezanilla M, Perroud PF, Pan A et al (2005) An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Plant Biol 7:251–257PubMedCrossRefGoogle Scholar
  13. 13.
    Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474PubMedCrossRefGoogle Scholar
  14. 14.
    Vidali L, Rounds CM, Hepler PK et al (2009) Lifeact-mEGFP reveals a dynamic apical F-Actin network in tip growing plant cells. PLoS One 4:e5744PubMedCrossRefGoogle Scholar
  15. 15.
    Cho SH, Chung YS, Cho SK et al (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 9:14–19PubMedGoogle Scholar
  16. 16.
    Li LH, Yang J, Qiu HL et al (2010) Genetic transformation of Physcomitrella patens mediated by Agrobacterium tumefaciens. Afr J Biotechnol 9:3719–3725Google Scholar
  17. 17.
    Sawahel W, Onde S, Knight C et al (1992) Transfer of foreign DNA into Physcomitrella patens protonemal tissue by using the gene gun. Plant Mol Biol Rep 10:314–315CrossRefGoogle Scholar
  18. 18.
    Smidkova M, Hola M, Angelis KJ (2010) Efficient biolistic transformation of the moss Physcomitrella patens. Biol Plant 54: 777–780CrossRefGoogle Scholar
  19. 19.
    Roberts AW, Dimos CS, Budziszek MJ Jr et al (2011) Knocking out the wall: protocols for gene targeting in Physcomitrella patens. Methods Mol Biol 715:273–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Jeffrey P. Bibeau
    • 1
  • Luis Vidali
    • 1
  1. 1.Department of Biology and BiotechnologyWorcester Polytechnic instituteWorcesterUSA

Personalised recommendations