Skip to main content

Sirtuins in Yeast: Phenotypes and Tools

  • Protocol
  • First Online:
Sirtuins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1077))

Abstract

Originally discovered as a transcriptional silencing protein, SIR2 was later linked to yeast replicative aging and the rest was history. Sir2p is now known to be a member of a class of protein deacetylases with a unique enzymatic activity coupling the deacetylation event to NAD+ hydrolysis. While still incompletely understood, the mechanism by which Sir2p modulates yeast aging is linked to inhibition of rDNA recombination. Here we describe phenotypes associated with yeast Sirtuins and assays used to monitor Sirtuin function in yeast, including the replicative aging assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shore D, Squire M, Nasmyth KA (1984) Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3(12):2817–2823

    PubMed  CAS  Google Scholar 

  2. Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6(2): 688–702

    PubMed  CAS  Google Scholar 

  3. Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66(6):1279–1287

    Article  PubMed  CAS  Google Scholar 

  4. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature 403(6771):795–800

    Article  PubMed  CAS  Google Scholar 

  5. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183: 1751–1752

    Article  PubMed  CAS  Google Scholar 

  6. Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL, Promislow DE, Thomas JH, Kaeberlein M, Kennedy BK (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18(4):564–570. doi:10.1101/gr.074724.107

    Article  PubMed  CAS  Google Scholar 

  7. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487): 2126–2128

    Article  PubMed  CAS  Google Scholar 

  8. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:1381–1387

    Article  CAS  Google Scholar 

  9. Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864

    Article  PubMed  CAS  Google Scholar 

  10. Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, Kaeberlein M (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5(6):505–514

    Article  PubMed  CAS  Google Scholar 

  11. Schleit J, Wasko BM, Kaeberlein M (2012) Yeast as a model to understand the interaction between genotype and the response to calorie restriction. FEBS Lett 586(18):2868–2873. doi:10.1016/j.febslet.2012.07.038

    Article  PubMed  CAS  Google Scholar 

  12. Hachinohe M, Hanaoka F, Masumoto H (2011) Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells 16(4):467–477. doi:10.1111/j.1365-2443.2011.01493.x

    Article  PubMed  CAS  Google Scholar 

  13. Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183(2): 413–422. doi:10.1534/genetics.109.106229, 411SI-413SI

    Article  PubMed  CAS  Google Scholar 

  14. Lee SS, Vizcarra IA, Huberts DH, Lee LP, Heinemann M (2012) Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A 109(13):4916–4920. doi:10.1073/pnas.1113505109

    Article  PubMed  CAS  Google Scholar 

  15. Xie Z, Zhang Y, Zou K, Brandman O, Luo C, Ouyang Q, Li H (2012) Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell. doi:10.1111/j.1474-9726.2012.00821.x

    PubMed  Google Scholar 

  16. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi T, Horiuchi T (1996) A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1(5):465–474

    Article  PubMed  CAS  Google Scholar 

  18. Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3(4):447–455

    Article  PubMed  CAS  Google Scholar 

  19. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56(5):771–776

    Article  PubMed  CAS  Google Scholar 

  20. Huang J, Moazed D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17(17):2162–2176

    Article  PubMed  CAS  Google Scholar 

  21. Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16(19):2479–2484. doi:10.1101/gad.232902

    Article  PubMed  CAS  Google Scholar 

  22. Skryabin KG, Eldarov MA, Larionov VL, Bayev AA, Klootwijk J, de Regt VC, Veldman GM, Planta RJ, Georgiev OI, Hadjiolov AA (1984) Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res 12(6):2955–2968

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12(24):3821–3830

    Article  PubMed  CAS  Google Scholar 

  24. Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9(3):e1003329. doi:10.1371/journal.pgen.1003329

    Article  PubMed  CAS  Google Scholar 

  25. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807. doi:10.1038/nature08085

    Article  PubMed  CAS  Google Scholar 

  26. Vega-Palas MA, Martin-Figueroa E, Florencio FJ (2000) Telomeric silencing of a natural subtelomeric gene. Mol Gen Genet 263(2): 287–291

    Article  PubMed  CAS  Google Scholar 

  27. Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative lifespan in budding yeast. J Vis Exp pii:1209

    Google Scholar 

  28. Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61(6):1089–1101

    Article  PubMed  CAS  Google Scholar 

  29. Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471

    Article  PubMed  CAS  Google Scholar 

  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Smeal T, Claus J, Kennedy B, Cole F, Guarente L (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84(4):633–642

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tsuchiyama, S., Kwan, E., Dang, W., Bedalov, A., Kennedy, B.K. (2013). Sirtuins in Yeast: Phenotypes and Tools. In: Hirschey, M. (eds) Sirtuins. Methods in Molecular Biology, vol 1077. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-637-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-637-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-636-8

  • Online ISBN: 978-1-62703-637-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics