Skip to main content
Book cover

Sirtuins pp 259–271Cite as

The Emerging Links Between Sirtuins and Autophagy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1077))

Abstract

Evidence suggests a role for acetylation and deacetylation in regulating autophagy. In this chapter, we describe the methods useful for understanding this important connection. In particular, we discuss methods for the measurements of sirtuin deacetylase activity, in vivo acetylation detection, and the common assays used to monitor both autophagy and the more selective process of mitophagy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. doi:10.1146/annurev-cellbio-092910-154005

    Article  PubMed  CAS  Google Scholar 

  2. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. doi:nature04723 [pii] 10.1038/nature04723

    Article  PubMed  CAS  Google Scholar 

  3. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi:nature04724 [pii] 10.1038/nature04724

    Article  PubMed  CAS  Google Scholar 

  4. Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704):2105–2108. doi:306/5704/2105 [pii] 10.1126/science.1101731

    Article  PubMed  CAS  Google Scholar 

  5. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392. doi:10.1126/science.1099196 1099196 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105(9):3374–3379. doi:0712145105 [pii] 10.1073/pnas.0712145105

    Article  PubMed  CAS  Google Scholar 

  7. Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284(10):6322–6328. doi:M807135200 [pii] 10.1074/jbc.M807135200

    Article  PubMed  CAS  Google Scholar 

  8. Hamai A, Codogno P (2012) New targets for acetylation in autophagy. Sci Signal 5(231):pe29. doi:scisignal.2003187 [pii] 10.1126/scisignal.2003187

    Article  PubMed  Google Scholar 

  9. Yi C, Yu L (2012) How does acetylation regulate autophagy? Autophagy 8(10):1529–1530. doi:21156 [pii]

    Article  PubMed  CAS  Google Scholar 

  10. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192(4):615–629. doi:jcb.201008167 [pii] 10.1083/jcb.201008167

    Article  PubMed  CAS  Google Scholar 

  11. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. doi:nrm3028 [pii] 10.1038/nrm3028

    Article  PubMed  CAS  Google Scholar 

  12. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18(8):1042–1052. doi:S1074-5521(11)00204-3 [pii] 10.1016/j.chembiol.2011.05.013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to A. Miyawaki for the gift of mtKeima. This work was supported by NIH Intramural funds.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lee, I.H., Yun, J., Finkel, T. (2013). The Emerging Links Between Sirtuins and Autophagy. In: Hirschey, M. (eds) Sirtuins. Methods in Molecular Biology, vol 1077. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-637-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-637-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-636-8

  • Online ISBN: 978-1-62703-637-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics