Skip to main content

Making a Protein Extract from Plant Pathogenic Fungi for Gel- and LC-Based Proteomics

  • Protocol
  • First Online:
Book cover Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1072))

Abstract

Proteomic technologies have become a successful tool to provide relevant information on fungal biology. In the case of plant pathogenic fungi, this approach would allow a deeper knowledge of the interaction and the biological cycle of the pathogen, as well as the identification of pathogenicity and virulence factors. These two elements open up new possibilities for crop disease diagnosis and environment-friendly crop protection. Phytopathogenic fungi, due to its particular cellular characteristics, can be considered as a recalcitrant biological material, which makes it difficult to obtain quality protein samples for proteomic analysis. This chapter focuses on protein extraction for gel- and LC-based proteomics with specific protocols of our current research with Botrytis cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afroz A, Ali GM, Mir A et al (2011) Application of proteomics to investigate stress-induced proteins for improvement in crop protection. Plant Cell Rep 30:745–763

    Article  PubMed  CAS  Google Scholar 

  2. Quirino BF, Candido ES, Campos PF et al (2010) Proteomic approaches to study plant-pathogen interactions. Phytochemistry 71:351–362

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez-Fernandez R, Jorrin-Novo JV (2012) Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res 11:3–16

    Article  PubMed  CAS  Google Scholar 

  4. Gonzalez-Fernandez R, Prats P, Jorrin-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010: Article ID 932527, 36 pages. doi:932510.931155/932010/932527

    Google Scholar 

  5. Choquer M, Fournier E, Kunz C et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  PubMed  CAS  Google Scholar 

  6. Egan MJ, Talbot NJ (2008) Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi. Curr Opin Plant Biol 11:367–372

    Article  PubMed  CAS  Google Scholar 

  7. Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400

    Article  PubMed  CAS  Google Scholar 

  8. Vincent D, Tan KC, Cassidy L et al (2012) Proteomic techniques for plant-fungal interactions. Methods Mol Biol 835:75–96

    Article  PubMed  CAS  Google Scholar 

  9. Marra R, Ambrosino P, Carbone V et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Article  PubMed  CAS  Google Scholar 

  10. Rampitsch C, Bykova NV, McCallum B et al (2006) Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics 6:1897–1907

    Article  PubMed  CAS  Google Scholar 

  11. Kamoun S (2009) The secretome of plant-associated fungi and oomycetes. In: Deising HB (ed.) The mycota vol. V—plant relationships, 2nd edn. Springer, Berlin, pp. 173–180

    Google Scholar 

  12. González-Fernández R, Jorrin-Novo JV (2010) Proteomics of fungal plant pathogens: the case of Botrytis cinerea. In: Méndez-Vilas AM (ed) Current research technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, Spain, pp 205–217

    Google Scholar 

  13. Ruiz-Herrera J (2012) Fungal cell wall: structure, synthesis and assembly, 2nd edn. CRC, Boca Raton, FL

    Book  Google Scholar 

  14. Ebstrup T, Saalbach G, Egsgaard H (2005) A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics 5:2839–2848

    Article  PubMed  CAS  Google Scholar 

  15. Grinyer J, Kautto L, Traini M et al (2007) Proteome mapping of the Trichoderma reesei 20S proteasome. Curr Genet 51:79–88

    Article  PubMed  CAS  Google Scholar 

  16. Melin P, Schnurer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    Article  PubMed  CAS  Google Scholar 

  17. Bohmer M, Colby T, Bohmer C et al (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 7:675–685

    Article  PubMed  Google Scholar 

  18. Grinyer J, Hunt S, McKay M et al (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  PubMed  CAS  Google Scholar 

  19. Grinyer J, McKay M, Nevalainen H et al (2004) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    Article  PubMed  CAS  Google Scholar 

  20. Sulc M, Peslova K, Zabka M et al (2009) Biomarkers of Aspergillus spores: strain typing and protein identification. Int J Mass Spec 280:162–168

    Article  CAS  Google Scholar 

  21. Nandakumar MP, Marten MR (2002) Comparison of lysis methods and preparation protocols for one- and two-dimensional electrophoresis of Aspergillus oryzae intracellular proteins. Electrophoresis 23:2216–2222

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  PubMed  CAS  Google Scholar 

  23. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  Google Scholar 

  24. Nandakumar MP, Shen J, Raman B et al (2003) Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis. J Proteome Res 2:89–93

    Article  PubMed  CAS  Google Scholar 

  25. Rabilloud T (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19:758–760

    Article  PubMed  CAS  Google Scholar 

  26. Everberg H, Gustavasson N, Tjerned F (2008) Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems. Methods Mol Biol 424:403–412

    Article  PubMed  CAS  Google Scholar 

  27. Kniemeyer O, Lessing F, Scheibner O et al (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49:178–189

    Article  PubMed  CAS  Google Scholar 

  28. Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    Article  PubMed  CAS  Google Scholar 

  29. Rabilloud T (1996) Solubilization of proteins for electrophoretic analyses. Electrophoresis 17:813–829

    Article  PubMed  CAS  Google Scholar 

  30. Rabilloud T, Adessi C, Giraudel A et al (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18:307–316

    Article  PubMed  CAS  Google Scholar 

  31. Herbert BR, Grinyer J, McCarthy JT et al (2006) Improved 2-DE of microorganisms after acidic extraction. Electrophoresis 27:1630–1640

    Article  PubMed  CAS  Google Scholar 

  32. Fernandez-Acero FJ, Jorge I, Calvo E et al (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Acero FJ, Jorge I, Calvo E et al (2006) Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics 6(Suppl 1):S88–S96

    Article  PubMed  Google Scholar 

  34. Fernandez-Acero FJ, Colby T, Harzen A et al (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    Article  PubMed  CAS  Google Scholar 

  35. Guais O, Borderies G, Pichereaux C et al (2008) Proteomics analysis of "Rovabiot Excel", a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol 35:1659–1668

    Article  PubMed  CAS  Google Scholar 

  36. Maldonado AM, Echevarria-Zomeño S, Jean-Baptiste S et al (2008) Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. J Proteomics 71:461–472

    Article  PubMed  CAS  Google Scholar 

  37. Kao SH, Wong HK, Chiang CY et al (2008) Evaluating the compatibility of three colorimetric protein assays for two-dimensional electrophoresis experiments. Proteomics 8:2178–2184

    Article  PubMed  CAS  Google Scholar 

  38. Fragner D, Zomorrodi M, Kues U et al (2009) Optimized protocol for the 2-DE of extracellular proteins from higher basidiomycetes inhabiting lignocellulose. Electrophoresis 30:2431–2441

    Article  PubMed  CAS  Google Scholar 

  39. Fernandez-Acero FJ, Colby T, Harzen A et al (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    Article  PubMed  CAS  Google Scholar 

  40. Espino JJ, Gutierrez-Sanchez G, Brito N et al (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    Article  PubMed  CAS  Google Scholar 

  41. Vincent D, Balesdent MH, Gibon J et al (2009) Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Electrophoresis 30:4118–4136

    Article  PubMed  CAS  Google Scholar 

  42. Medina, M.L. and Francisco, W.A. (2008) Isolation and enrichment of secreted proteins from filamentous fungi. In: Posch A (ed) 2D PAGE: sample preparation and fractionation. Springer, pp. 275–285

    Google Scholar 

  43. Ravalason H, Jan G, Molle D et al (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719–733

    Article  PubMed  CAS  Google Scholar 

  44. Abbas A, Koc H, Liu F et al (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    Article  PubMed  CAS  Google Scholar 

  45. González-Fernández R, Aloria K, Valero-Galván J et al (2013) Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. J Prot, http://dx.doi.org/10.1016/j.jprot.2013.06.022

  46. González-Fernández R, Redondo I, Jorrin-Novo JV (2010) Gel-based proteomic analysis of Botrytis cinerea. The simplest 1-DE reveals differences in virulence-related protein abundance among strains. Proteómica 5:128–129

    Google Scholar 

  47. Supek F, Peharec P, Krsnik-Rasol M et al (2008) Enhanced analytical power of SDS-PAGE using machine learning algorithms. Proteomics 8:28–31

    Article  PubMed  CAS  Google Scholar 

  48. Rabilloud T, Vaezzadeh AR, Potier N et al (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  PubMed  CAS  Google Scholar 

  49. Haynes PA, Roberts TH (2007) Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 7:2963–2975

    Article  PubMed  CAS  Google Scholar 

  50. Pirondini A, Visioli G, Malcevschi A et al (2006) A 2-D liquid-phase chromatography for proteomic analysis in plant tissues. J Chromatogr B Analyt Technol Biomed Life Sci 833:91–100

    Article  PubMed  CAS  Google Scholar 

  51. Recorbet G, Rogniaux H, Gianinazzi-Pearson V et al (2009) Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. New Phytol 181:248–260

    Article  PubMed  CAS  Google Scholar 

  52. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  53. Ye M, Jiang X, Feng S et al (2007) Advances in chromatographic techniques and methods in shotgun proteome analysis. Trends Anal Chem 26:80–84

    Article  CAS  Google Scholar 

  54. Cooper B, Neelam A, Campbell KB et al (2007) Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol Plant Microbe Interact 20:857–866

    Article  PubMed  CAS  Google Scholar 

  55. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  56. Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787–797

    Article  PubMed  CAS  Google Scholar 

  57. Roe MR, Griffin TJ (2006) Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes. Proteomics 6:4678–4687

    Article  PubMed  CAS  Google Scholar 

  58. González-Fernández R, Aloria K, Redondo I et al (2011) Gel-free/label-free analysis to study the secretome of Botrytis cinerea. Tenth annual congress—HUPO, Geneva, Switzerland

    Google Scholar 

  59. Gonzalez-Fernandez R, Aloria K, Arizmendi JM et al (2013) Application of label-free shotgun nUPLC−MSE and 2‑DE approaches in the study of Botrytis cinerea mycelium. J Proteome Res 12:3042–3056

    Google Scholar 

  60. González-Fernández R, Redondo I, Gomez-Galvez FJ et al (2011) Proteomic approaches to study the phytopathogenic fungus Botrytis cinerea. Botrytis-Sclerotinia post-genome workshop, Lyon, France

    Google Scholar 

  61. de Oliveira JM, de Graaff LH (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89:225–237

    Article  PubMed  Google Scholar 

  62. Porteus B, Kocharunchitt C, Nilsson RE et al (2011) Utility of gel-free, label-free shotgun proteomics approaches to investigate microorganisms. Appl Microbiol Biotechnol 90:407–416

    Article  PubMed  CAS  Google Scholar 

  63. Harder A (2008) Sample preparation procedure for cellular fungi. Methods Mol Biol 425:265–273

    Article  PubMed  CAS  Google Scholar 

  64. Gusakov A, Semenova M, Sinitsyn A (2010) Mass spectrometry in the study of extracellular enzymes produced by filamentous fungi. J Anal Chem 65:1446–1461

    Article  CAS  Google Scholar 

  65. Valledor L, Jorrin J (2011) Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74:1–18

    Article  PubMed  CAS  Google Scholar 

  66. Wang W, Vignani R, Scali M et al (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  PubMed  CAS  Google Scholar 

  67. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  68. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  69. Neuhoff V, Arold N, Taube D et al (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  70. Pontecorvo G, Roper JA, Forbes E (1953) Genetic recombination without sexual reproduction in Aspergillus niger. J Gen Microbiol 8:198–210

    Article  PubMed  CAS  Google Scholar 

  71. Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  PubMed  CAS  Google Scholar 

  72. Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  PubMed  CAS  Google Scholar 

  73. Becker CH, Bern M (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  Google Scholar 

  74. Mueller LN, Brusniak MY, Mani DR et al (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7:51–61

    Article  PubMed  CAS  Google Scholar 

  75. Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation (BotBank Project, EUI2008-03686), the Andalusian Regional Government (Junta de Andalucía), and the University of Córdoba (AGR-0164: Agricultural and Plant Biochemistry and Proteomics Research Group).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fernández, R.G., Redondo, I., Jorrin-Novo, J.V. (2014). Making a Protein Extract from Plant Pathogenic Fungi for Gel- and LC-Based Proteomics. In: Jorrin-Novo, J., Komatsu, S., Weckwerth, W., Wienkoop, S. (eds) Plant Proteomics. Methods in Molecular Biology, vol 1072. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-631-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-631-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-630-6

  • Online ISBN: 978-1-62703-631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics