Manipulating the Avian Epiblast and Epiblast-Derived Stem Cells

  • Cantas Alev
  • Mikiharu Nakano
  • Yuping Wu
  • Hiroyuki Horiuchi
  • Guojun Sheng
Part of the Methods in Molecular Biology book series (MIMB, volume 1074)


Compared to eutherian mammals, birds retain a primitive form of epiblast development. Molecular studies of the avian epiblast can provide valuable insight for mammalian epiblast research. Here, we introduce several basic techniques in handling epiblast-stage embryos of the chick, the major model organism for avian developmental biology studies. We describe how to collect embryos for RNA extraction and gene expression analysis, to set up ex ovo New culture for overexpression, bead graft and small molecule-based inhibitor studies, and to carry out whole-mount RNA in situ hybridization analysis. We introduce a novel and simple method for molecular perturbation of the epiblast differentiation in ovo. We also describe how to perform primary chicken epiblast cell culture, to establish stable epiblast stem cell (Epi-SC) lines, and to assay for pluripotency in primary epiblast cells and Epi-SCs.

Key words

Avian Chicken Epiblast Stem cells Pluripotency New culture Bead graft In situ hybridization Chicken ES cells Epiblast stem cells 


  1. 1.
    Eyal-Giladi H, Kochav S (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol 49:321–337PubMedCrossRefGoogle Scholar
  2. 2.
    Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272PubMedCrossRefGoogle Scholar
  3. 3.
    Lavial F, Acloque H, Bertocchini F et al (2007) The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134:3549–3563PubMedCrossRefGoogle Scholar
  4. 4.
    Shin M, Alev C, Wu Y et al (2011) Activin/TGF-beta signaling regulates Nanog expression in the epiblast during gastrulation. Mech Dev 128:268–278PubMedCrossRefGoogle Scholar
  5. 5.
    Nakano M, Arisawa K, Yokoyama S et al (2011) Characteristics of novel chicken embryonic stem cells established using chicken leukemia inhibitory factor. J Poult Sci 48:64–72CrossRefGoogle Scholar
  6. 6.
    Streit A, Stern CD (2008) Operations on primitive streak stage avian embryos. Methods Cell Biol 87:3–17PubMedCrossRefGoogle Scholar
  7. 7.
    New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morph 3:320–331Google Scholar
  8. 8.
    Stern CD, Ireland GW (1981) An integrated experimental study of endoderm formation in avian embryos. Anat Embryol (Berl) 163:245–263CrossRefGoogle Scholar
  9. 9.
    Stern CD (1998) Detection of multiple gene products simultaneously by in situ hybridization and immunohistochemistry in whole mounts of avian embryos. Curr Top Dev Biol 36:223–243PubMedCrossRefGoogle Scholar
  10. 10.
    Petitte JN, Clark ME, Liu G et al (1990) Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108:185–189PubMedGoogle Scholar
  11. 11.
    Kagami H, Clark ME, Verrinder Gibbins AM et al (1995) Sexual differentiation of chimeric chickens containing ZZ and ZW cells in the germline. Mol Reprod Dev 42:379–387PubMedCrossRefGoogle Scholar
  12. 12.
    Pain B, Clark ME, Shen M et al (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348PubMedGoogle Scholar
  13. 13.
    van de Lavoir MC, Mather-Love C, Leighton P et al (2006) High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 123:31–41PubMedCrossRefGoogle Scholar
  14. 14.
    Lavial F, Pain B (2010) Chicken embryonic stem cells as a non-mammalian embryonic stem cell model. Dev Growth Differ 52:101–114PubMedCrossRefGoogle Scholar
  15. 15.
    Horiuchi H, Tategaki A, Yamashita Y et al (2004) Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. J Biol Chem 279:24514–24520PubMedCrossRefGoogle Scholar
  16. 16.
    Yamashita Y, Tategaki A, Ogawa M et al (2006) Effect of novel monoclonal antibodies on LIF-induced signaling in chicken blastodermal cells. Dev Comp Immunol 30:513–522PubMedCrossRefGoogle Scholar
  17. 17.
    Lillehoj HS, Choi KD (1998) Recombinant chicken interferon-gamma-mediated inhibition of Eimeria tenella development in vitro and reduction of oocyst production and body weight loss following Eimeria acervulina challenge infection. Avian Dis 42:307–314PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Cantas Alev
    • 1
  • Mikiharu Nakano
    • 2
  • Yuping Wu
    • 3
  • Hiroyuki Horiuchi
    • 2
  • Guojun Sheng
    • 3
  1. 1.Laboratory for Early EmbryogenesisRIKEN Center for Developmental BiologyChuo-Ku, KobeJapan
  2. 2.Laboratory for Immunobiology, Department of Molecular and Applied BioscienceHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Laboratory for Early EmbryogenesisRIKEN Center for Developmental BiologyChuo-Ku, KobeJapan

Personalised recommendations