Systematic Methodology for the Development of Mathematical Models for Biological Processes

  • Cleo Kontoravdi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1073)

Abstract

Synthetic biology gives researchers the opportunity to rationally (re-)design cellular activities to achieve a desired function. The design of networks of pathways towards accomplishing this calls for the application of engineering principles, often using model-based tools. Success heavily depends on model reliability. Herein, we present a systematic methodology for developing predictive models comprising model formulation considerations, global sensitivity analysis, model reduction (for highly complex models or where experimental data are limited), optimal experimental design for parameter estimation, and predictive capability checking. Its efficacy and validity are demonstrated using an example from bioprocessing. This approach systematizes the process of developing reliable mathematical models at a minimum experimental cost, enabling in silico simulation and optimization.

Key words

Global sensitivity analysis Optimal experiment design Mathematical modelling Parameter estimation Model validation 

References

  1. 1.
    Jimenez Del Val I, Nagy JM, Kontoravdi C (2011) A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog 27:1730–1743CrossRefGoogle Scholar
  2. 2.
    Selvarasu S, Ho YS et al (2012) Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 109:1415–1429CrossRefGoogle Scholar
  3. 3.
    Hildebrandt S, Raden D et al (2008) A top-down approach to mechanistic biological modeling: application to the single-chain antibody folding pathway. Biophys J 95:3535–3558CrossRefGoogle Scholar
  4. 4.
    Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis. Wiley, New YorkGoogle Scholar
  5. 5.
    Kendall M, Stuart A (1979) The advanced theory of statistics, vol 2. Macmillan, New YorkGoogle Scholar
  6. 6.
    Mckay MD (1995) Evaluating prediction uncertainty. US Nuclear Regulatory Commission and Los Alamos National Laboratory, Washington, DCCrossRefGoogle Scholar
  7. 7.
    Cukier RI, Fortuin CM et al (1973) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. J Chem Phys 59:3873–3878CrossRefGoogle Scholar
  8. 8.
    Cukier RI, Schaibly JH, Shuler KE (1975) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. J Chem Phys 63:1140–1149CrossRefGoogle Scholar
  9. 9.
    Cukier RI, Levine HB, Shuler KE (1978) Non-linear sensitivity analysis of multi-parameter model systems. J Comput Phys 26:1–42CrossRefGoogle Scholar
  10. 10.
    Schaibly JH, Shuler KE (1973) Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 2. Applications. J Chem Phys 59:3879–3888CrossRefGoogle Scholar
  11. 11.
    Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280CrossRefGoogle Scholar
  12. 12.
    Sobol IM, Kucherenko S (2009) Derivative based global sensitivity measures and their link with global sensitivity indices. Math Comput Simul 79:3009–3017CrossRefGoogle Scholar
  13. 13.
    Kiparissides A, Kucherenko SS et al (2009) Global sensitivity analysis challenges in biological systems modeling. Ind Eng Chem Res 48:7168–7180CrossRefGoogle Scholar
  14. 14.
    Versyck KJ, Claes JE, Vanimpe JF (1997) Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotechnol Prog 13:524–531CrossRefGoogle Scholar
  15. 15.
    Nathanson MH, Saidel GM (1985) Multiple-objective criteria for optimal experimental design—application to ferrokinetics. Am J Physiol 248:R378–R386Google Scholar
  16. 16.
    Munack A (1989) Optimal feeding strategy for identification of monod-type models by fed-batch experiments. Computer applications in fermentation technology: modelling and control of biotechnological processes. Elsevier Applied Science Publishers Ltd, Barking EssexGoogle Scholar
  17. 17.
    Van Derlinden E, Bernaerts K, Van Impe JF (2008) Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments. Int J Food Microbiol 128:89–100CrossRefGoogle Scholar
  18. 18.
    Bernaerts K, Gysemans KPM et al (2006) Optimal experiment design for cardinal values estimation: guidelines for data collection (vol 100, pg 153, 2005). Int J Food Microbiol 110:112–113CrossRefGoogle Scholar
  19. 19.
    Jacques JA (1998) Design of experiments. J Franklin Inst 335:259–279CrossRefGoogle Scholar
  20. 20.
    Sidoli FR, Mantalaris A, Asprey SP (2004) Modelling of Mammalian cells and cell culture processes. Cytotechnology 44:27–46CrossRefGoogle Scholar
  21. 21.
    Kontoravdi C, Asprey SP et al (2005) Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures. Biotechnol Progress 21:1128–1135CrossRefGoogle Scholar
  22. 22.
    Process Systems Enterprise (2002) gPROMS Advanced User Guide, London, UKGoogle Scholar
  23. 23.
    Kontoravdi C, Pistikopoulos EN, Mantalaris A (2010) Systematic development of predictive mathematical models for animal cell cultures. Comput Chem Eng 34:1192–1198CrossRefGoogle Scholar
  24. 24.
    Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28:1376–1389CrossRefGoogle Scholar
  25. 25.
    Miller WM, Blanch HW, Wilke CR (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate, and pH Biotechnology and Bioengineering 32(8):947–965CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Cleo Kontoravdi
    • 1
  1. 1.Centre for Process Systems Engineering, Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations