Fluorescent Protein-Based Biosensors pp 163-174

Part of the Methods in Molecular Biology book series (MIMB, volume 1071)

Genetically Encoded Fluorescent Biosensors for Live-Cell Imaging of MT1-MMP Protease Activity

  • Mingxing Ouyang
  • Shaoying Lu
  • Yingxiao Wang
Protocol

Abstract

The proteolytic activity of Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is crucial for cancer cell invasion and metastasis. To visualize the protease activity of MT1-MMP with high spatiotemporal resolution at the extracellular plasma membrane surface of live cancer cells, a genetically encoded fluorescent biosensor of MT1-MMP has been developed. Here we describe the design principles of the MT1-MMP biosensor, the characterization of the MT1-MMP biosensor in vitro, and the live-cell imaging protocol used to visualize MT1-MMP activity in mammalian cells. We also provide brief guidelines for observing MT1-MMP subcellular activity by fluorescence resonance energy transfer (FRET) in a cell migration assay.

Key words

Fluorescent biosensor FRET Live-cell imaging MT1-MMP Matrix Metalloproteinase Protease Cancer cell 

References

  1. 1.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedCrossRefGoogle Scholar
  2. 2.
    Kunkel MT et al (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280(7):5581–5587PubMedCrossRefGoogle Scholar
  3. 3.
    Miyawaki A et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887PubMedCrossRefGoogle Scholar
  4. 4.
    Mochizuki N et al (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411(6841):1065–1068PubMedCrossRefGoogle Scholar
  5. 5.
    Pertz O et al (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440(7087):1069–1072PubMedCrossRefGoogle Scholar
  6. 6.
    Ting AY et al (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98(26):15003–15008PubMedCrossRefGoogle Scholar
  7. 7.
    Violin JD et al (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161(5):899–909PubMedCrossRefGoogle Scholar
  8. 8.
    Wang Y et al (2005) Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang J et al (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437(7058):569–573PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang J et al (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98(26):14997–15002PubMedCrossRefGoogle Scholar
  11. 11.
    Ouyang M et al (2008) Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci U S A 105(38):14353–14358PubMedCrossRefGoogle Scholar
  12. 12.
    Shaner NC et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572PubMedCrossRefGoogle Scholar
  13. 13.
    Sabeh F et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167(4):769–781PubMedCrossRefGoogle Scholar
  14. 14.
    Itoh Y, Seiki M (2006) MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol 206(1):1–8PubMedCrossRefGoogle Scholar
  15. 15.
    Deryugina EI et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263(2):209–223PubMedCrossRefGoogle Scholar
  16. 16.
    Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194(1):1–11PubMedCrossRefGoogle Scholar
  17. 17.
    Seiki M, Yana I (2003) Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci 94(7):569–574PubMedCrossRefGoogle Scholar
  18. 18.
    Kinoshita T et al (1996) Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res 56(11):2535–2538PubMedGoogle Scholar
  19. 19.
    Sato H et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370(6484):61–65PubMedCrossRefGoogle Scholar
  20. 20.
    Lehti K et al (2005) An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 19(8):979–991PubMedCrossRefGoogle Scholar
  21. 21.
    Ouyang M et al (2010) Simultaneous visualization of protumorigenic Src and MT1-MMP activities with fluorescence resonance energy transfer. Cancer Res 70(6):2204–2212PubMedCrossRefGoogle Scholar
  22. 22.
    Ouyang M et al (2008) Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J Biol Chem 283(25):17740–17748PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Mingxing Ouyang
    • 1
  • Shaoying Lu
    • 1
  • Yingxiao Wang
    • 2
    • 3
  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Department of Bioengineering, Neuroscience Program, Center of Biophysics and Computational Biology, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations