Abstract
Calcineurin is an evolutionarily conserved, ubiquitously expressed protein phosphatase that serves as a major effector of Ca2+ signals, regulating diverse biological processes such as gene expression, tissue differentiation, immune responses, and neural plasticity. The following method describes how to monitor real-time calcineurin activity in cultured mammalian cells using a fluorescence resonance energy transfer (FRET)-based activity reporter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hilioti Z, Cunningham KW (2004) Calcineurin: roles of the Ca2+/calmodulin-dependent protein phosphatase in diverse eukaryotes. Top Curr Genet 5:73–90
Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80(4):1483–1521
Harris CD, Ermak G, Davies KJ (2005) Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci 62(21):2477–2486. doi:10.1007/s00018-005-5085-4
Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8): 589–600. doi:10.1038/nrm1983
Heit JJ (2007) Calcineurin/NFAT signaling in the beta-cell: from diabetes to new therapeutics. Bioessays 29(10):1011–1021. doi:10.1002/bies.20644
Xie CW (2004) Calcium-regulated signaling pathways: role in amyloid beta-induced synaptic dysfunction. Neuromolecular Med 6(1):53–64. doi:10.1385/NMM:6:1:053
Mehta S, Zhang J (2011) Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 80: 375–401. doi:10.1146/annurev-biochem-060409-093259
Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111(5):3614–3666. doi:10.1021/cr100002u
Fosbrink M, Aye-Han NN, Cheong R, Levchenko A, Zhang J (2010) Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc Natl Acad Sci U S A 107(12):5459–5464. doi:10.1073/pnas.0909671107
Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV, Tobelmann P, Brautigan DL, Stukenberg PT, Kapoor TM (2008) Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453(7198):1132–1136. doi:10.1038/nature06923
Gao X, Zhang J (2008) Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol Biol Cell 19(10):4366–4373. doi:10.1091/mbc.E08-05-0449
Kunkel MT, Toker A, Tsien RY, Newton AC (2007) Calcium-dependent regulation of protein kinase D revealed by a genetically encoded kinase activity reporter. J Biol Chem 282(9):6733–6742. doi:10.1074/jbc.M608086200
Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161(5):899–909. doi:10.1083/jcb.200302125
Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045. doi:10.1038/nature03469
Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM, Tsien RY (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437(7058):569–573. doi:10.1038/nature04140
Newman RH, Zhang J (2008) Visualization of phosphatase activity in living cells with a FRET-based calcineurin activity sensor. Mol Biosyst 4(6):496–501. doi:10.1039/b720034j
Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79
Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18): 2205–2232
Horsley V, Pavlath GK (2002) NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol 156(5):771–774
Okamura H, Aramburu J, Garcia-Rodriguez C, Viola JP, Raghavan A, Tahiliani M, Zhang X, Qin J, Hogan PG, Rao A (2000) Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell 6(3):539–550
Porter CM, Havens MA, Clipstone NA (2000) Identification of amino acid residues and protein kinases involved in the regulation of NFATc subcellular localization. J Biol Chem 275(5):3543–3551
Ananthanarayanan B, Ni Q, Zhang J (2008) Chapter 2: molecular sensors based on fluorescence resonance energy transfer to visualize cellular dynamics. Methods Cell Biol 89:37–57. doi:10.1016/S0091-679X(08)00602-X
Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327:472–500
Depry C, Zhang J (2011) Using FRET-based reporters to visualize subcellular dynamics of protein kinase A activity. Methods Mol Biol 756:285–294. doi:10.1007/978-1-61779-160-4_16
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Mehta, S., Zhang, J. (2014). Using a Genetically Encoded FRET-Based Reporter to Visualize Calcineurin Phosphatase Activity in Living Cells. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_11
Download citation
DOI: https://doi.org/10.1007/978-1-62703-622-1_11
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-621-4
Online ISBN: 978-1-62703-622-1
eBook Packages: Springer Protocols

