The Design and Application of Genetically Encodable Biosensors Based on Fluorescent Proteins

  • Robert H. Newman
  • Jin Zhang
Part of the Methods in Molecular Biology book series (MIMB, volume 1071)


To track the activity of cellular signaling molecules within the endogenous cellular environment, researchers have developed a diverse set of genetically encodable fluorescent biosensors. These sensors, which can be targeted to specific subcellular regions to monitor specific pools of a given signaling molecule in real time, rely upon conformational changes in a sensor domain to alter the photophysical properties of green fluorescent protein (GFP) family members. In this introductory chapter, we first discuss the properties of GFP family members before turning our attention to the design and application of genetically encodable fluorescent biosensors to live cell imaging.

Key words

Fluorescent proteins Fluorescent biosensor Biosensor design FRET Cell signaling Live cell imaging 


  1. 1.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781PubMedCrossRefGoogle Scholar
  3. 3.
    Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721PubMedCrossRefGoogle Scholar
  4. 4.
    Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182PubMedCrossRefGoogle Scholar
  5. 5.
    Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96:2135–2140PubMedCrossRefGoogle Scholar
  6. 6.
    Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6:713–717PubMedCrossRefGoogle Scholar
  7. 7.
    Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260PubMedCrossRefGoogle Scholar
  8. 8.
    Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666PubMedCrossRefGoogle Scholar
  9. 9.
    Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852–2864PubMedCrossRefGoogle Scholar
  10. 10.
    Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921PubMedCrossRefGoogle Scholar
  11. 11.
    Pakhomov AA, Martynov VI (2008) GFP family: structural insights into spectral tuning. Chem Biol 15:755–764PubMedCrossRefGoogle Scholar
  12. 12.
    Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci U S A 93:8362–8367PubMedCrossRefGoogle Scholar
  13. 13.
    Brejc K, Sixma TK, Kitts PA, Kain SR et al (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci U S A 94:2306–2311PubMedCrossRefGoogle Scholar
  14. 14.
    Ormo M, Cubitt AB, Kallio K, Gross LA et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395PubMedCrossRefGoogle Scholar
  15. 15.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  16. 16.
    Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L et al (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529PubMedCrossRefGoogle Scholar
  17. 17.
    Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599PubMedCrossRefGoogle Scholar
  18. 18.
    Llopis J, McCaffery JM, Miyawaki A, Farquhar MG et al (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95:6803–6808PubMedCrossRefGoogle Scholar
  19. 19.
    Griesbeck O, Baird GS, Campbell RE, Zacharias DA et al (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194PubMedCrossRefGoogle Scholar
  20. 20.
    Nagai T, Ibata K, Park ES, Kubota M et al (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90PubMedCrossRefGoogle Scholar
  21. 21.
    Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504PubMedCrossRefGoogle Scholar
  22. 22.
    Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449PubMedCrossRefGoogle Scholar
  23. 23.
    Goedhart J, van Weeren L, Hink MA, Vischer NO et al (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 7:137–139PubMedCrossRefGoogle Scholar
  24. 24.
    Klarenbeek JB, Goedhart J, Hink MA, Gadella TW et al (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6:e19170PubMedCrossRefGoogle Scholar
  25. 25.
    Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22:289–296PubMedCrossRefGoogle Scholar
  26. 26.
    Shu X, Shaner NC, Yarbrough CA, Tsien RY et al (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–9647PubMedCrossRefGoogle Scholar
  27. 27.
    Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613PubMedCrossRefGoogle Scholar
  28. 28.
    Wachter RM, Watkins JL, Kim H (2010) Mechanistic diversity of red fluorescence acquisition by GFP-like proteins. Biochemistry 49:7417–7427PubMedCrossRefGoogle Scholar
  29. 29.
    Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557PubMedCrossRefGoogle Scholar
  30. 30.
    Shaner NC, Lin MZ, McKeown MR, Steinbach PA et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551PubMedCrossRefGoogle Scholar
  31. 31.
    Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedCrossRefGoogle Scholar
  32. 32.
    Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574PubMedCrossRefGoogle Scholar
  33. 33.
    Lin MZ, McKeown MR, Ng HL, Aguilera TA et al (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179PubMedCrossRefGoogle Scholar
  34. 34.
    Lam AJ, St Pierre F, Gong Y, Marshall JD et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012PubMedCrossRefGoogle Scholar
  35. 35.
    Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13:621–650PubMedCrossRefGoogle Scholar
  36. 36.
    Hanson GT, Aggeler R, Oglesbee D, Cannon M et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053PubMedCrossRefGoogle Scholar
  37. 37.
    Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554PubMedCrossRefGoogle Scholar
  38. 38.
    Dittmer PJ, Miranda JG, Gorski JA, Palmer AE (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284:16289–16297PubMedCrossRefGoogle Scholar
  39. 39.
    Park JG, Qin Y, Galati DF, Palmer AE (2012) New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol 7:1636–1640PubMedCrossRefGoogle Scholar
  40. 40.
    Qin Y, Dittmer PJ, Park JG, Jansen KB et al (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108:7351–7356PubMedCrossRefGoogle Scholar
  41. 41.
    Miyawaki A, Llopis J, Heim R, McCaffery JM et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  42. 42.
    Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202PubMedCrossRefGoogle Scholar
  43. 43.
    Nagai T, Yamada S, Tominaga T, Ichikawa M et al (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559PubMedCrossRefGoogle Scholar
  44. 44.
    Ohkura M, Matsuzaki M, Kasai H, Imoto K et al (2005) Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77:5861–5869PubMedCrossRefGoogle Scholar
  45. 45.
    Palmer AE, Giacomello M, Kortemme T, Hires SA et al (2006) Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol 13:521–530PubMedCrossRefGoogle Scholar
  46. 46.
    Tallini YN, Ohkura M, Choi BR, Ji G et al (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103:4753–4758PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang J, Allen MD (2007) FRET-based biosensors for protein kinases: illuminating the kinome. Mol Biosyst 3:759–765PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang J, Ma Y, Taylor SS, Tsien RY (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98:14997–15002PubMedCrossRefGoogle Scholar
  49. 49.
    Allen MD, Zhang J (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348:716–721PubMedCrossRefGoogle Scholar
  50. 50.
    Depry C, Allen MD, Zhang J (2011) Visualization of PKA activity in plasma membrane microdomains. Mol Biosyst 7:52–58PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang J, Hupfeld CJ, Taylor SS, Olefsky JM et al (2005) Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437:569–573PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou X, Herbst-Robinson KJ, Zhang J (2012) Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 504:317–340PubMedCrossRefGoogle Scholar
  53. 53.
    Knopfel T, Tomita K, Shimazaki R, Sakai R (2003) Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods 30:42–48PubMedCrossRefGoogle Scholar
  54. 54.
    Lundby A, Mutoh H, Dimitrov D, Akemann W et al (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918PubMedCrossRefGoogle Scholar
  56. 56.
    Komatsu N, Aoki K, Yamada M, Yukinaga H et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656PubMedCrossRefGoogle Scholar
  57. 57.
    Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Robert H. Newman
    • 1
    • 2
  • Jin Zhang
    • 1
  1. 1.Department of Pharmacology and Molecular SciencesThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of BiologyNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations