Skip to main content

Identification of Chemosensory Receptor Genes from Vertebrate Genomes

  • Protocol
  • First Online:
Pheromone Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1068))

Abstract

Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species’ living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  PubMed  CAS  Google Scholar 

  2. Niimura Y (2012) Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr Genomics 13:103–114

    Article  PubMed  CAS  Google Scholar 

  3. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  4. Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044

    Article  PubMed  CAS  Google Scholar 

  5. Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: Comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed  Google Scholar 

  6. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  PubMed  CAS  Google Scholar 

  7. Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:763–773

    Article  PubMed  CAS  Google Scholar 

  8. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  PubMed  CAS  Google Scholar 

  9. Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  PubMed  CAS  Google Scholar 

  10. Saraiva LR, Korsching SI (2007) A novel olfactory receptor gene family in teleost fish. Genome Res 17:1448–1457

    Article  PubMed  CAS  Google Scholar 

  11. Hashiguchi Y, Nishida M (2005) Evolution of vomeronasal-type odorant receptor genes in the zebrafish genome. Gene 362:19–28

    Article  PubMed  CAS  Google Scholar 

  12. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2:e708

    Article  PubMed  Google Scholar 

  13. Hayden S, Bekaert M, Crider TA et al (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision. Mol Biol Evol 27:1192–1200

    Article  PubMed  CAS  Google Scholar 

  15. Grus WE, Shi P, Zhang YP et al (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci USA 102:5767–5772

    Article  PubMed  CAS  Google Scholar 

  16. Young JM, Kambere M, Trask BJ et al (2005) Divergent V1R repertoires in five species: Amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs. Genome Res 15:231–240

    Article  PubMed  CAS  Google Scholar 

  17. Shi P, Zhang J (2007) Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–174

    Article  PubMed  CAS  Google Scholar 

  18. Young JM, Massa HF, Hsu L et al (2010) Extreme variability among mammalian V1R gene families. Genome Res 20:10–18

    Article  PubMed  CAS  Google Scholar 

  19. Hashiguchi Y, Nishida M (2006) Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes. BMC Evol Biol 6:76

    Article  PubMed  Google Scholar 

  20. Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215

    Article  PubMed  CAS  Google Scholar 

  21. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  22. Katoh K, Kuma K, Toh H et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  23. Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of molecular clock and linearized trees. Mol Biol Evol 12:823–833

    PubMed  CAS  Google Scholar 

  24. Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:e1002195

    Article  PubMed  CAS  Google Scholar 

  25. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  PubMed  CAS  Google Scholar 

  26. Yang H, Shi P, Zhang YP et al (2005) Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86:306–315

    Article  PubMed  CAS  Google Scholar 

  27. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:240–254

    Article  PubMed  CAS  Google Scholar 

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  29. Go Y, Niimura Y (2008) Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol Biol Evol 25:1897–1907

    Article  PubMed  CAS  Google Scholar 

  30. Fredriksson R, Lagerström MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant (20770192 and 23770271) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Niimura, Y. (2013). Identification of Chemosensory Receptor Genes from Vertebrate Genomes. In: Touhara, K. (eds) Pheromone Signaling. Methods in Molecular Biology, vol 1068. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-619-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-619-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-618-4

  • Online ISBN: 978-1-62703-619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics