Advertisement

Tandem Mass Spectrometry in Hormone Measurement

  • Helen P. Field
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1065)

Abstract

Mass spectrometry methods have the potential to measure different hormones during the same analysis and have improved specificity and a wide analytical range compared with many immunoassay methods. Increasingly in clinical laboratories liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays are replacing immunoassays for the routine measurement of testosterone, 17-hydroxyprogesterone, and other steroid hormones. Reference LC-MS/MS methods for steroid, thyroid, and peptide hormones are being used for assessment of the performance and calibration of commercial immunoassays. In this chapter, the general principles of tandem mass spectrometry and examples of hormone assays are described.

Key words

LC-MS/MS Adrenal steroids Gonadal steroids Thyroid hormones Insulin 

References

  1. 1.
    Chace DH, Millington DS, Terada N et al (1993) Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 39:66–71PubMedGoogle Scholar
  2. 2.
    Chace DH, Kalas TA (2005) A biochemical perspective on the use of tandem mass spectrometry for newborn screening and clinical testing. Clin Biochem 38:296–309, Erratum in: Clin Biochem (2005) 38:495PubMedCrossRefGoogle Scholar
  3. 3.
    Lamph SA, Halloran SP, Wheeler MJ (2009) Evidence review: healthcare applications of liquid chromatography/tandem mass spectrometry. CEP08058. Center for evidence-bassed purchasing. http://nhscep.useconnect.co.uk
  4. 4.
    Shah VP, Midha KK, Findlay JWA et al (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17:1551–1557PubMedCrossRefGoogle Scholar
  5. 5.
    Guidance for industry. Bioanalytical method validation, May 2001. http://www.fda.gov/cder/guidance/index.htm
  6. 6.
    Viswanathan CT, Bansal S, Booth B et al (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24:1962–1973PubMedCrossRefGoogle Scholar
  7. 7.
    Clinical and Laboratory Standards Institute (CLSI) (2007) Mass spectrometry in the clinical laboratory: general principles and guidance; approved guideline. CLSI document C50-A. Wayne, PA: CLSIGoogle Scholar
  8. 8.
    Honour JW (2011) Development and validation of a quantitative assay based on tandem mass spectrometry. Ann Clin Biochem 48:97–111PubMedCrossRefGoogle Scholar
  9. 9.
    Leaver N (2011) A practical guide to implementing clinical mass spectrometry systems. ILM Publications, St AlbansGoogle Scholar
  10. 10.
    Lee JS, Ettinger B, Stanczyk FZ et al (2006) Comparison of methods to measure low serum estradiol levels in postmenopausal women. J Clin Endocrinol Metab 91:3791–3797PubMedCrossRefGoogle Scholar
  11. 11.
    Santen RJ, Demers L, Ohorodnik S et al (2007) Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 72:666–671PubMedCrossRefGoogle Scholar
  12. 12.
    Courant F, Aksglaede L, Antignac JP et al (2010) Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92PubMedCrossRefGoogle Scholar
  13. 13.
    Henion JD (2009) The origins of ion spray liquid chromatography-tandem mass spectrometry. Clin Chem 55:1234–1235PubMedCrossRefGoogle Scholar
  14. 14.
    Griffiths WJ, Jonsson AP, Liu S et al (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355:545–561PubMedGoogle Scholar
  15. 15.
    Ceglarek U, Kortz L, Leichtle A et al (2009) Rapid quantification of steroid patterns in human serum by on-line solid phase extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry. Clin Chim Acta 401:114–118PubMedCrossRefGoogle Scholar
  16. 16.
    Kushnir MM, Rockwood AL, Roberts WL et al (2006) Performance characteristics of a novel tandem mass spectrometry assay for serum testosterone. Clin Chem 52:120–128PubMedCrossRefGoogle Scholar
  17. 17.
    Hanold KA, Fischer SM, Cormia PH et al (2004) Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal Chem 76:2842–2851PubMedCrossRefGoogle Scholar
  18. 18.
    Downard K (2004) Mass spectrometry: a foundation course. The Royal Society of Chemistry, CambridgeGoogle Scholar
  19. 19.
    Herbert CG, Johnstone RAW (2003) Mass spectrometry basics. CRC Press LLC, FloridaGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Xu RN, Fan L, Rieser MJ et al (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal 44:342–355PubMedCrossRefGoogle Scholar
  23. 23.
    Singh RJ (2008) Validation of a high throughput method for serum/plasma testosterone using liquid chromatography tandem mass spectrometry (LC-MS/MS). Steroids 73:1339–1344PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor PJ, Cooper DP, Gordon RD et al (2009) Measurement of aldosterone in human plasma by semiautomated HPLC-tandem mass spectrometry. Clin Chem 55:1155–1162PubMedCrossRefGoogle Scholar
  25. 25.
    Vesper HW, Botelho JC (2010) Standardization of testosterone measurements in humans. J Steroid Biochem Mol Biol 121:513–519PubMedCrossRefGoogle Scholar
  26. 26.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334PubMedCrossRefGoogle Scholar
  28. 28.
    Kushnir MM, Rockwood AL, Nelson GJ et al (2005) Assessing analytical specificity in quantitative analysis using tandem mass spectrometry. Clin Biochem 38:319–327PubMedCrossRefGoogle Scholar
  29. 29.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effects in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030PubMedCrossRefGoogle Scholar
  30. 30.
    Van Eeckhaut A, Lanckmans K, Sarre S (2009) Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B 877:2198–2207CrossRefGoogle Scholar
  31. 31.
    Gosetti F, Mazzucco E, Zampieri D et al (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937PubMedCrossRefGoogle Scholar
  32. 32.
    Duxbury K, Owen L, Gillingwate RS et al (2008) Naturally occurring isotopes of an analyte can interfere with doubly deuterated internal standard measurement. Ann Clin Biochem 45:210–212PubMedCrossRefGoogle Scholar
  33. 33.
    Annesley TM (2007) Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry. Clin Chem 53:1827–1834PubMedCrossRefGoogle Scholar
  34. 34.
    Napoli KL (2009) More on methanol-associated matrix effects in electrospray ionization mass spectrometry. Clin Chem 55:1250–1252PubMedCrossRefGoogle Scholar
  35. 35.
    Elder PA, Lewis JG, King RI et al (2009) An anomalous result from gel tubes for vitamin D. Clin Chim Acta 410:95PubMedCrossRefGoogle Scholar
  36. 36.
    Wang C, Shiraishi S, Leung A et al (2008) Validation of a testosterone and dihydrotestosterone liquid chromatography tandem mass spectrometry assay: Interference and comparison with established methods. Steroids 73:1345–1352PubMedCrossRefGoogle Scholar
  37. 37.
    Jemal M, Ouyang Z, Xia YQ (2010) Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomed Chromatogr 24:2–19PubMedCrossRefGoogle Scholar
  38. 38.
    Higashi T, Nishio T, Uchida S et al (2008) Simultaneous determination of 17α-hydroxypregnenolone and 17α-hydroxyprogesterone in dried blood spots from low birth weight infants using LC-MS/MS. J Pharm Biomed Anal 48:177–182PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson DW (2005) Ketosteroid profiling using Girard T derivatives and electrospray ioniszation tandem mass spectrometry : direct plasma analysis of androstenedione, 17-hydroxyprogesterone and cortisol. Rapid Commun Mass Spectrom 19:193–200PubMedCrossRefGoogle Scholar
  40. 40.
    Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, Meikle AW et al (2006) Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 52:1559–1567PubMedCrossRefGoogle Scholar
  41. 41.
    Santa T (2011) Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 25:1–10PubMedCrossRefGoogle Scholar
  42. 42.
    Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19:401–407PubMedCrossRefGoogle Scholar
  43. 43.
    Tan A, Hussain S, Musuku A et al (2009) Internal standard response variations during incurred sample analysis by LC-MS/MS: case by case trouble-shooting. J Chromatogr B Analyt Technol Biomed Life Sci 877:3201–3209PubMedCrossRefGoogle Scholar
  44. 44.
    Bystrom CE, Salameh W, Reitz R et al (2010) Plasma renin activity by LC-MS/MS: development of a prototypical clinical assay reveals a subpopulation of human plasma samples with substantial peptidase activity. Clin Chem 56:1561–1569PubMedCrossRefGoogle Scholar
  45. 45.
    Thienpont LM, Fierens C, De Leenheer AP et al (1999) Isotope dilution-gas chromatography/mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of triiodo-L-thyronine in serum. Rapid Commun Mass Spectrom 13:1924–1931PubMedCrossRefGoogle Scholar
  46. 46.
    Wang S, Cyronak M, Yang E (2007) Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed Anal 43:701–707PubMedCrossRefGoogle Scholar
  47. 47.
    Lindegardh N, Annerberg A, White NJ et al (2008) Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 862:227–236PubMedCrossRefGoogle Scholar
  48. 48.
    NCCLS (2002) Gas chromatography/mass spectrometry (GC/MS) confirmation of drugs; approved guideline C43-A. NCCLS, Wayne, PAGoogle Scholar
  49. 49.
    Official Journal of the European Communities. Commission Decision implementing Council Directive 99/23/EC concerning the performance of analytical methods and the interpretation of results. 17 Aug 2002Google Scholar
  50. 50.
    Delatour T, Mottier P, Gremaud E (2007) Limits of suspicion, recognition and confirmation as concepts that account for the confirmation transitions at the detection limit for quantification by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1169:103–110PubMedCrossRefGoogle Scholar
  51. 51.
    Sauvage FL, Gaulier JM, Lachâtre G et al (2008) Pitfalls and prevention strategies for liquid chromatography-tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54:1519–1527PubMedCrossRefGoogle Scholar
  52. 52.
    Vogeser M, Seger C (2008) A decade of HPLC-MS/MS in the routine clinical laboratory – goals for further developments. Clin Biochem 41:649–662PubMedCrossRefGoogle Scholar
  53. 53.
    Vogeser M, Kirchhoff F (2011) Progress in automation of LC-MS in laboratory medicine. Clin Biochem 44:4–13PubMedCrossRefGoogle Scholar
  54. 54.
    Netzel BC, Cradic KW, Bro ET et al (2011) Increasing liquid chromatography-tandem mass spectrometry throughput by mass tagging: a sample-multiplexed high-throughput assay for 25-hydroxyvitamin D2 and D3. Clin Chem 57:431–440PubMedCrossRefGoogle Scholar
  55. 55.
  56. 56.
    Himmelsbach M (2012) 10 Years of MS instrumental developments—impact on LC-MS/MS in clinical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:3–17PubMedGoogle Scholar
  57. 57.
    Shackleton C (2010) Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 121:481–490PubMedCrossRefGoogle Scholar
  58. 58.
    Krone N, Hughes BA, Lavery GG et al (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC-MS/MS). J Steroid Biochem Mol Biol 121:496–504PubMedCrossRefGoogle Scholar
  59. 59.
    Tai SS, Welch MJ (2004) Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope dilution liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Anal Chem 76:1008–1014PubMedCrossRefGoogle Scholar
  60. 60.
    Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 77:6359–6363PubMedCrossRefGoogle Scholar
  61. 61.
    Tai SS, Xu B, Welch MJ (2006) Development and evaluation of a candidate reference measurement procedure for the determination of progesterone in human serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 78:6628–6633PubMedCrossRefGoogle Scholar
  62. 62.
    Tai SS, Xu B, Welch MJ et al (2007) Development and evaluation of a candidate reference measurement procedure for the determination of testosterone in human serum using isotope dilution liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 388:1087–1094PubMedCrossRefGoogle Scholar
  63. 63.
    Rauh M (2009) Steroid measurement with LC-MS/MS in pediatric endocrinology. Mol Cell Endocrinol 301:272–281PubMedCrossRefGoogle Scholar
  64. 64.
    Stanczyk FZ, Clarke NJ (2010) Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol 121:491–495PubMedCrossRefGoogle Scholar
  65. 65.
    Kushnir MM, Rockwood AL, Bergquist J (2010) Liquid chromatography-tandem mass spectrometry applications in endocrinology. Mass Spectrom Rev 29:480–502PubMedCrossRefGoogle Scholar
  66. 66.
    Kushnir MM, Rockwood AL, Roberts WL et al (2011) Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem 44:77–88PubMedCrossRefGoogle Scholar
  67. 67.
    Carvalho VM (2011) The coming of age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:50–58PubMedGoogle Scholar
  68. 68.
    Taieb J, Mathian B, Millot F et al (2003) Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography–mass spectrometry in sera from 116 men, women, and children. Clin Chem 49:1381–1395PubMedCrossRefGoogle Scholar
  69. 69.
    Wang C, Catlin DH, Demers LM et al (2004) Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 89:534–543PubMedCrossRefGoogle Scholar
  70. 70.
    Thienpont LM, Van Uytfanghe K, Blincko S et al (2008) State-of-the-art of serum testosterone measurement by isotope dilution-liquid chromatography-tandem mass spectrometry. Clin Chem 54:1290–1297PubMedCrossRefGoogle Scholar
  71. 71.
    Vesper HW, Bhasin S, Wang C et al (2009) Interlaboratory comparison study of serum total testosterone [corrected] measurements performed by mass spectrometry methods. Steroids 74:498–503, Erratum in: Steroids. 200974(9):791PubMedCrossRefGoogle Scholar
  72. 72.
    Vesper HW, Botelho JC, Shacklady C et al (2008) CDC project on standardizing steroid hormone measurements. Steroids 73:1286–1292PubMedCrossRefGoogle Scholar
  73. 73.
    Soldin OP, Sharma H, Husted L et al (2009) Pediatric reference intervals for aldosterone, 17α-hydroxyprogesterone, dehydroepiandrosterone, testosterone and 25-hydroxy vitamin D3 using tandem mass spectrometry. Clin Biochem 42:823–827PubMedCrossRefGoogle Scholar
  74. 74.
    Kushnir MM, Blamires T, Rockwood AL et al (2010) Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin Chem 56:1138–1147PubMedCrossRefGoogle Scholar
  75. 75.
    Barth JH, Field HP, Yasmin E et al (2010) Defining hyperandrogenism in polycystic ovary syndrome: measurement of testosterone and androstenedione by liquid chromatography-tandem mass spectrometry and analysis by receiver operator characteristic plots. Eur J Endocrinol 162:611–615PubMedCrossRefGoogle Scholar
  76. 76.
    Haring R, Hannemann A, John U et al (2012) Age-specific reference ranges for serum testosterone and androstenedione concentrations in women measured by liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 97:408–415PubMedCrossRefGoogle Scholar
  77. 77.
    Herold DA, Fitzgerald RL (2003) Immunoassays for testosterone in women: better than a guess? Clin Chem 49:1250–1251PubMedCrossRefGoogle Scholar
  78. 78.
    Matsumoto AM, Bremner WJ (2004) Serum testosterone assays–accuracy matters. J Clin Endocrinol Metab 89:520–524PubMedCrossRefGoogle Scholar
  79. 79.
    Bhasin S, Wu F (2006) Making a diagnosis of androgen deficiency in adult men: what to do until all the facts are in? Nat Clin Pract Endocrinol Metab 2:529PubMedCrossRefGoogle Scholar
  80. 80.
    Rosner W, Auchus RJ, Azziz R et al (2007) Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab 92:405–413PubMedCrossRefGoogle Scholar
  81. 81.
    Rosner W, Vesper H (2010) Endocrine Society; American Association for Clinical Chemistry; American Association of Clinical Endocrinologists; Androgen Excess/PCOS Society; American Society for Bone and Mineral Research; American Society for Reproductive Medicine; American Urological Association; Association of Public Health Laboratories; Endocrine Society; Laboratory Corporation of America; North American Menopause Society; Pediatric Endocrine Society. Toward excellence in testosterone testing: a consensus statement. J Clin Endocrinol Metab 95:4542–4548PubMedCrossRefGoogle Scholar
  82. 82.
    Cawood ML, Field HP, Ford CF et al (2005) Testosterone measurement by isotope-dilution liquid chromatography-tandem mass spectrometry: validation of a method for routine clinical practice. Clin Chem 51:1472–1479PubMedCrossRefGoogle Scholar
  83. 83.
    Moal V, Mathieu E, Reynier P et al (2007) Low serum testosterone assayed by liquid chromatography-tandem mass spectrometry. Comparison with five immunoassay techniques. Clin Chim Acta 386:12–19PubMedCrossRefGoogle Scholar
  84. 84.
    Gallagher LM, Owen LJ, Keevil BG (2007) Simultaneous determination of androstenedione and testosterone in human serum by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 44:48–56PubMedCrossRefGoogle Scholar
  85. 85.
    Borrey D, Moerman E, Cockx A et al (2007) Column-switching LC-MS/MS analysis for quantitative determination of testosterone in human serum. Clin Chim Acta 382:134–137PubMedCrossRefGoogle Scholar
  86. 86.
    Turpeinen U, Linko S, Itkonen O et al (2008) Determination of testosterone in serum by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest 68:50–57PubMedCrossRefGoogle Scholar
  87. 87.
    Chen Y, Yazdanpanah M, Hoffman BR et al (2009) Rapid determination of serum testosterone by liquid chromatography-isotope dilution tandem mass spectrometry and a split sample comparison with three automated immunoassays. Clin Biochem 42:484–490PubMedCrossRefGoogle Scholar
  88. 88.
    Bui HN, Struys EA, Martens F et al (2010) Serum testosterone levels measured by isotope dilution-liquid chromatography-tandem mass spectrometry in postmenopausal women versus those in women who underwent bilateral oophorectomy. Ann Clin Biochem 47:248–252PubMedCrossRefGoogle Scholar
  89. 89.
    Salameh WA, Redor-Goldman MM, Clarke NJ et al (2010) Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry: total and free testosterone reference ranges. Steroids 75:169–175PubMedCrossRefGoogle Scholar
  90. 90.
    Fitzgerald RL, Griffin TL, Herold DA (2010) Analysis of testosterone in serum using mass spectrometry. Methods Mol Biol 603:489–500PubMedCrossRefGoogle Scholar
  91. 91.
    Chen Y, Yazdanpanah M, Wang XY et al (2010) Direct measurement of serum free testosterone by ultrafiltration followed by liquid chromatography tandem mass spectrometry. Clin Biochem 43:490–496PubMedCrossRefGoogle Scholar
  92. 92.
    Bhasin S, Pencina M, Jasuja GK et al (2011) Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J Clin Endocrinol Metab 96:2430–2439PubMedCrossRefGoogle Scholar
  93. 93.
    Shiraishi S, Lee PW, Leung A et al (2008) Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. Clin Chem 54:1855–1863PubMedCrossRefGoogle Scholar
  94. 94.
    Kulle AE, Riepe FG, Melchior D et al (2010) A novel ultrapressure liquid chromatography tandem mass spectrometry method for the simultaneous determination of androstenedione, testosterone, and dihydrotestosterone in pediatric blood samples: age- and sex-specific reference data. J Clin Endocrinol Metab 95:2399–2409PubMedCrossRefGoogle Scholar
  95. 95.
    Licea-Perez H, Wang S, Szapacs ME et al (2008) Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5alpha-dihydrotestosterone in human serum to support testosterone replacement therapy for hypogonadism. Steroids 73:601–610PubMedCrossRefGoogle Scholar
  96. 96.
    Rauh M, Groschl M, Rascher W et al (2006) Automated, fast and sensitive quantification of androstenedione, 17-hydroxyprogesterone and testosterone by tandem mass spectrometry with on-line extraction. Steroids 71:450–458PubMedCrossRefGoogle Scholar
  97. 97.
    Guo T, Taylor RL, Singh RJ et al (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin Chim Acta 372:76–82PubMedCrossRefGoogle Scholar
  98. 98.
    Rossi C, Calton L, Hammond G et al (2010) Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin Chim Acta 411:222–228PubMedCrossRefGoogle Scholar
  99. 99.
    Janzen N, Sander S, Terhardt M et al (2008) Fast and direct quantification of adrenal steroids by tandem mass spectrometry in serum and dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 861:117–122PubMedCrossRefGoogle Scholar
  100. 100.
    Lewis JG (2006) Steroid analysis in saliva: an overview. Clin Biochem Rev 27:139–146PubMedGoogle Scholar
  101. 101.
    Gröschl M (2008) Current status of salivary hormone analysis. Clin Chem 54:1759–1769PubMedCrossRefGoogle Scholar
  102. 102.
    Wood P (2009) Salivary steroid assays—research or routine? Ann Clin Biochem 46:183–196PubMedCrossRefGoogle Scholar
  103. 103.
    Matsui F, Koh E, Yamamoto K et al (2009) Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for simultaneous measurement of salivary testosterone and cortisol in healthy men for utilization in the diagnosis of late-onset hypogonadism in males. Endocr J 56:1083–1093PubMedCrossRefGoogle Scholar
  104. 104.
    Macdonald PR, Owen LJ, Wu FC et al (2011) A liquid chromatography-tandem mass spectrometry method for salivary testosterone with adult male reference interval determination. Clin Chem 57:774–775PubMedCrossRefGoogle Scholar
  105. 105.
    Jensen MA, Hansen AM, Abrahamsson P et al (2011) Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone. J Chromatogr B Analyt Technol Biomed Life Sci 879:2527–2532PubMedCrossRefGoogle Scholar
  106. 106.
    Hintikka L, Kuuranne T, Leinonen A et al (2008) Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J Mass Spectrom 43:965–973PubMedCrossRefGoogle Scholar
  107. 107.
    Bowers LD (1997) Analytical advances in detection of performance-enhancing compounds. Clin Chem 43:1299–1304PubMedGoogle Scholar
  108. 108.
    Saudan C, Entenza JM, Baume N et al (2006) Short-term stability of testosterone and epitestosterone conjugates in urine samples: quantification by liquid chromatography-linear ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 844:168–174PubMedCrossRefGoogle Scholar
  109. 109.
    Danaceau JP, Scott Morrison M, Slawson MH (2008) Quantitative confirmation of testosterone and epitestosterone in human urine by LC/Q-ToF mass spectrometry for doping control. J Mass Spectrom 43:993–1000PubMedCrossRefGoogle Scholar
  110. 110.
    Chang YC, Li CM, Li LA et al (2003) Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst 128:363–368PubMedCrossRefGoogle Scholar
  111. 111.
    Kalhorn TF, Page ST, Howald WN et al (2007) Analysis of testosterone and dihydrotestosterone from biological fluids as the oxime derivatives using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:3200–3206PubMedCrossRefGoogle Scholar
  112. 112.
    Lih FB, Titus MA, Mohler JL et al (2010) Atmospheric pressure photoionization tandem mass spectrometry of androgens in prostate cancer. Anal Chem 82:6000–6007PubMedCrossRefGoogle Scholar
  113. 113.
    Rothman MS, Carlson NE, Xu M et al (2011) Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids 76:177–182PubMedCrossRefGoogle Scholar
  114. 114.
    Yamashita K, Miyashiro Y, Maekubo H et al (2009) Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 74:920–926PubMedCrossRefGoogle Scholar
  115. 115.
    Choi MH, Kim JN, Chung BC (2003) Rapid HPLC-electrospray tandem mass spectrometric assay for urinary testosterone and dihydrotestosterone glucuronides from patients with benign prostate hyperplasia. Clin Chem 49:322–325PubMedCrossRefGoogle Scholar
  116. 116.
    Lehotay DC, Hall P, Lepage J et al (2011) LC-MS/MS progress in newborn screening. Clin Biochem 44:21–31PubMedCrossRefGoogle Scholar
  117. 117.
    Makela SK, Ellis G (1988) Nonspecificity of a direct 17 alpha-hydroxyprogesterone radioimmunoassay kit when used with samples from neonates. Clin Chem 34:2070–2075PubMedGoogle Scholar
  118. 118.
    Wong W, Shackleton CHL, Covey TR et al (1992) Identification of the steroids in neonatal plasma that interfere with 17-alphahydroxyprogesterone radioimmunoassays. Clin Chem 38:1830–1837PubMedGoogle Scholar
  119. 119.
    Marsden D, Larson CA (2004) Emerging role for tandem mass spectrometry in detecting congenital adrenal hyperplasia. Clin Chem 50:467–468PubMedCrossRefGoogle Scholar
  120. 120.
    Minutti CZ, Lacey JM, Magera MJ et al (2004) Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J Clin Endocrin Metab 89:3687–3693CrossRefGoogle Scholar
  121. 121.
    Lacey JM, Minutti CZ, Magera MJ et al (2004) Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin Chem 50:621–625PubMedCrossRefGoogle Scholar
  122. 122.
    Schwarz E, Liu A, Randall H et al (2009) Use of steroid profiling by UPLC-MS/MS as a second tier test in newborn screening for congenital adrenal hyperplasia: the Utah experience. Pediatr Res 66:230–235PubMedCrossRefGoogle Scholar
  123. 123.
    Janzen N, Peter S, Sander U et al (2007) Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography-tandem mass spectrometry. J Clin Endocrin Metab 92:2581–2589CrossRefGoogle Scholar
  124. 124.
    Janzen N, Sander S, Terhardt M et al (2011) Rapid steroid hormone quantification for congenital adrenal hyperplasia (CAH) in dried blood spots using UPLC liquid chromatography-tandem mass spectrometry. Steroids 76:1437–1442PubMedCrossRefGoogle Scholar
  125. 125.
    Dhillon K, Ho T, Rich P et al (2011) An automated method on analysis of blood steroids using liquid chromatography tandem mass spectrometry: application to population screening for congenital adrenal hyperplasia in newborns. Clin Chim Acta 412:2076–2084PubMedCrossRefGoogle Scholar
  126. 126.
    Wudy SA, Hartmann M, Svoboda M (2000) Determination of 17-hydroxyprogesterone in plasma by stable isotope dilution/benchtop liquid chromatography- tandem mass spectrometry. Horm Res 53:68–71PubMedCrossRefGoogle Scholar
  127. 127.
    Kao PC, Machacek DA, Magera MJ et al (2001) Diagnosis of adrenal cortical dysfunction by liquid chromatography-tandem mass spectrometry. Ann Clin Lab Sci 31:199–204PubMedGoogle Scholar
  128. 128.
    Turpeinen U, Itkonen O, Ahola L et al (2005) Determination of 17α-hydroxyprogesterone in serum by liquid chromatography-tandem mass spectrometry and immunoassay. Scand J Clin Lab Invest 65:3–12PubMedCrossRefGoogle Scholar
  129. 129.
    Holst JP, Soldin SJ, Tractenberg RE et al (2007) Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids 72:71–84PubMedCrossRefGoogle Scholar
  130. 130.
    Carvalho VM, Nakamura OH, Vieira JGH (2008) Simultaneous quantitation of seven endogenous C-21 adrenal steroids by liquid chromatography tandem mass spectrometry in human serum. J Chromatogr B 872:154–161CrossRefGoogle Scholar
  131. 131.
    Fanelli F, Belluomo I, Di Lallo VD et al (2011) Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 76:244–253PubMedCrossRefGoogle Scholar
  132. 132.
    Peter M, Janzen N, Sander S et al (2008) A case of 11beta-hydroxylase deficiency detected in a newborn screening program by second-tier LC-MS/MS. Horm Res 69:253–256PubMedCrossRefGoogle Scholar
  133. 133.
    Vogeser M, Briegel J, Jacob K (2001) Determination of serum cortisol by isotope-dilution liquid-chromatography electrospray ionization tandem mass spectrometry with on-line extraction. Clin Chem Lab Med 39:944–947PubMedCrossRefGoogle Scholar
  134. 134.
    Kushnir MM, Neilson R, Roberts WL et al (2004) Cortisol and cortisone analysis in serum and plasma by atmospheric pressure photoionization tandem mass spectrometry. Clin Biochem 37:357–362PubMedCrossRefGoogle Scholar
  135. 135.
    Monaghan PJ, Owen LJ, Trainer PJ et al (2011) Comparison of serum cortisol measurement by immunoassay and liquid chromatography-tandem mass spectrometry in patients receiving the 11β-hydroxylase inhibitor metyrapone. Ann Clin Biochem 48:441–446PubMedCrossRefGoogle Scholar
  136. 136.
    Ray JA, Kushnir MM, Rockwood AL et al (2011) Analysis of cortisol, cortisone and dexamethasone in human serum using liquid chromatography tandem mass spectrometry and assessment of cortisol: cortisone ratios in patients with impaired kidney function. Clin Chim Acta 412:1221–1228PubMedCrossRefGoogle Scholar
  137. 137.
    Vogeser M, Groetzner J, Küpper C et al (2003) Free serum cortisol during the postoperative acute phase response determined by equilibrium dialysis liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 41:146–151PubMedGoogle Scholar
  138. 138.
    Ionita IA, Akhlaghi F (2010) Quantification of unbound prednisolone, prednisone, cortisol and cortisone in human plasma by ultrafiltration and direct injection into liquid chromatrography tandem mass spectrometry. Ann Clin Biochem 47:350–357PubMedCrossRefGoogle Scholar
  139. 139.
    Kirchhoff F, Briegel J, Vogeser M (2011) Quantification of free serum cortisol based on equilibrium dialysis and isotope dilution-liquid chromatography-tandem mass spectrometry. Clin Biochem 44:894–899PubMedCrossRefGoogle Scholar
  140. 140.
    Pretorius CJ, Galligan JP, McWhinney BC et al (2011) Free cortisol method comparison: ultrafiltation, equilibrium dialysis, tracer dilution, tandem mass spectrometry and calculated free cortisol. Clin Chim Acta 412:1043–1047PubMedCrossRefGoogle Scholar
  141. 141.
    Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography-tandem mass spectrometry method for urinary cortisol and cortisone. Clin Chem 48:1511–1519PubMedGoogle Scholar
  142. 142.
    Kushnir MM, Rockwood AL, Nelson GJ et al (2003) Liquid chromatography-tandem mass spectrometry analysis of urinary free cortisol. Clin Chem 49:965–967PubMedCrossRefGoogle Scholar
  143. 143.
    Meikle AW, Findling J, Kushnir MM et al (2003) Pseudo-Cushing syndrome caused by fenofibrate interference with urinary cortisol assayed by high-performance liquid chromatography. J Clin Endocrinol Metab 88:3521–3524PubMedCrossRefGoogle Scholar
  144. 144.
    McCann SJ, Gillingwater S, Keevil BG (2005) Measurement of urinary free cortisol using liquid chromatography-tandem mass spectrometry: comparison with the urine adapted ACS:180 serum cortisol chemiluminescent immunoassay and development of a new reference range. Ann Clin Biochem 42:112–118PubMedCrossRefGoogle Scholar
  145. 145.
    Wood L, Ducroq DH, Fraser HL et al (2008) Measurement of urinary free cortisol by tandem mass spectrometry and comparison with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Ann Clin Biochem 45:380–388PubMedCrossRefGoogle Scholar
  146. 146.
    Persichilli S, Gervasoni J, Iavarone F et al (2010) A simple liquid chromatography-tandem mass spectrometry method for urinary free cortisol analysis: suitable for routine purpose. Clin Chem Lab Med 48:1433–1437PubMedCrossRefGoogle Scholar
  147. 147.
    Jönsson BA, Malmberg B, Amilon A et al (2003) Determination of cortisol in human saliva using liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 784:63–68PubMedCrossRefGoogle Scholar
  148. 148.
    Perogamvros I, Owen LJ, Keevil BG et al (2010) Measurement of salivary cortisol with liquid chromatography-tandem mass spectrometry in patients undergoing dynamic endocrine testing. Clin Endocrinol 72:17–21CrossRefGoogle Scholar
  149. 149.
    Perogamvros I, Owen LJ, Newell-Price J et al (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Analyt Technol Biomed Life Sci 877:3771–3775PubMedCrossRefGoogle Scholar
  150. 150.
    Turpeinen U, Välimäki MJ, Hämäläinen E (2009) Determination of salivary cortisol by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest 69:592–597PubMedCrossRefGoogle Scholar
  151. 151.
    Owen LJ, Haslam S, Adaway JE et al (2010) A simplified liquid chromatography tandem mass spectrometry assay, using on-line solid-phase extraction, for the quantitation of cortisol in saliva and comparison with a routine DELFIA method. Ann Clin Biochem 47:131–136PubMedCrossRefGoogle Scholar
  152. 152.
    Raff H (2009) Utility of salivary cortisol measurements in Cushing’s syndrome and adrenal insufficiency. J Clin Endocrinol Metab 94:3647–3655PubMedCrossRefGoogle Scholar
  153. 153.
    Baikd SK, Sinaii N, Wade M et al (2007) Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: a comparison of assays to establish hypercortisolism. J Clin Endocrinol Metab 92:3102–3310CrossRefGoogle Scholar
  154. 154.
    Zerikly RK, Amiri L, Faiman C et al (2010) Diagnostic characteristics of late-night salivary cortisol using liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 95:4555–4559PubMedCrossRefGoogle Scholar
  155. 155.
    Erickson D, Singh RJ, Sathananthan A et al (2012) Late-night salivary cortisol for diagnosis of Cushing’s syndrome by liquid chromatography/tandem mass spectrometry assay. Clin Endocrinol 76:467–472CrossRefGoogle Scholar
  156. 156.
    Taylor RL, Grebe SK, Singh RJ (2004) Quantitative, highly sensitive liquid chromatography-tandem mass spectrometry method for detection of synthetic corticosteroids. Clin Chem 50:2345–2352PubMedCrossRefGoogle Scholar
  157. 157.
    Frerichs VA, Tornatore KM (2004) Determination of the glucocorticoids prednisone, prednisolone, dexamethasone, and cortisol in human serum using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 802:329–338PubMedCrossRefGoogle Scholar
  158. 158.
    Mazzarino M, Turi S, Botrè F (2008) A screening method for the detection of synthetic glucocorticosteroids in human urine by liquid chromatography-mass spectrometry based on class-characteristic fragmentation pathways. Anal Bioanal Chem 390:1389–1402PubMedCrossRefGoogle Scholar
  159. 159.
    Difrancesco R, Frerichs V, Donnelly J et al (2007) Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 859:42–51PubMedCrossRefGoogle Scholar
  160. 160.
    McWhinney BC, Briscoe SE, Ungerer JP et al (2010) Measurement of cortisol, cortisone, prednisolone, dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography-tandem mass spectrometry: Application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 878:2863–2869PubMedCrossRefGoogle Scholar
  161. 161.
    Ruiter AF, Teeninga N, Nauta J, Endert E, Ackermans MT et al (2012) Determination of unbound prednisolone, prednisone and cortisol in human serum and saliva by on-line solid-phase extraction liquid chromatography tandem mass spectrometry and potential implications for drug monitoring of prednisolone and prednisone in saliva. Biomed Chromatogr 26(7):789–796. doi: 10.1002/bmc.1730 PubMedCrossRefGoogle Scholar
  162. 162.
    Middle JG, Kane JW (2009) Oestradiol assays: fitness for purpose? Ann Clin Biochem 46:441–456PubMedCrossRefGoogle Scholar
  163. 163.
    Nelson RE, Grebe SK, Okane DJ et al (2004) Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem 50:373–384PubMedCrossRefGoogle Scholar
  164. 164.
    Kushnir MM, Rockwood AL, Bergquist J et al (2008) High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. Am J Clin Pathol 129:530–539PubMedCrossRefGoogle Scholar
  165. 165.
    Kushnir MM, Rockwood AL, Yue B et al (2010) High sensitivity measurement of estrone and estradiol in serum and plasma using LC-MS/MS. Methods Mol Biol 603:219–228PubMedCrossRefGoogle Scholar
  166. 166.
    Ankarberg-Lindgren C, Norjavaara E (2009) Are estradiol results determined by the tandem mass spectrometry assay clinically useful for children? Am J Clin Pathol 131:746–747PubMedCrossRefGoogle Scholar
  167. 167.
    Xu X, Roman JM, Issaq HJ et al (2007) Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem 79:7813–7821PubMedCrossRefGoogle Scholar
  168. 168.
    Yamashita K, Okuyama M, Watanabe Y et al (2007) Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 72:819–827PubMedCrossRefGoogle Scholar
  169. 169.
    Blair IA (2010) Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids 75:297–306PubMedCrossRefGoogle Scholar
  170. 170.
    Funder JW, Carey RM, Fardella C et al (2008) Endocrine Society. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:3266–3281PubMedCrossRefGoogle Scholar
  171. 171.
    Prome D, Viger A, Marquet A (1988) Use of tandem mass spectrometry (MS-MS) for aldosterone assay at the nanogram level in complex biological mixtures. Anal Biochem 172:264–269PubMedCrossRefGoogle Scholar
  172. 172.
    Fredline VF, Taylor PJ, Dodds HM et al (1997) A reference method for the analysis of aldosterone in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Biochem 252:308–313PubMedCrossRefGoogle Scholar
  173. 173.
    Yamashita K, Okuyama M, Nakagawa R et al (2008) Development of sensitive derivatization method for aldosterone in liquid chromatography-electrospray ionization tandem mass spectrometry of corticosteroids. J Chromatogr A 1200:114–121PubMedCrossRefGoogle Scholar
  174. 174.
    Turpeinen U, Hämäläinen E, Stenman UH et al (2008) Determination of aldosterone in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 862:113–118PubMedCrossRefGoogle Scholar
  175. 175.
    Taylor PJ, van Rosendal SP, Coombes JS et al (2010) Simultaneous measurement of aldosterone and cortisol by high-performance liquid chromatography-tandem mass spectrometry: application to dehydration-rehydration studies. J Chromatogr B Analyt Technol Biomed Life Sci 878:1195–1198PubMedCrossRefGoogle Scholar
  176. 176.
    Fredline VF, Kovacs EM, Taylor PJ et al (1999) Measurement of plasma renin activity with use of HPLC-electrospray-tandem mass spectrometry. Clin Chem 45:659–664PubMedGoogle Scholar
  177. 177.
    Thienpont LM, Van Uytfanghe K, Van Houcke S (2010) IFCC Working Group for Standardization of Thyroid Function Tests (WG-STFT). Standardization activities in the field of thyroid function tests: a status report. Clin Chem Lab Med 48:1577–1583PubMedCrossRefGoogle Scholar
  178. 178.
    De Brabandere VI, Hou P, Stöckl D et al (1998) Isotope dilution-liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of serum thyroxine as a potential reference method. Rapid Commun Mass Spectrom 12:1099–1103PubMedCrossRefGoogle Scholar
  179. 179.
    Tai SS, Bunk DM, White E et al (2004) Development and evaluation of a reference measurement procedure for the determination of total 3,3′,5-triiodothyronine in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 76:5092–5096, 5thPubMedCrossRefGoogle Scholar
  180. 180.
    Soukhova N, Soldin OP, Soldin SJ (2004) Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta 343:185–190PubMedCrossRefGoogle Scholar
  181. 181.
    Soldin OP, Tractenberg RE, Soldin SJ (2004) Differences between measurements of T4 and T3 in pregnant and nonpregnant women using isotope dilution tandem mass spectrometry and immunoassays: are there clinical implications? Clin Chim Acta 347:61–69PubMedCrossRefGoogle Scholar
  182. 182.
    Soldin OP, Tractenberg RE, Hollowell JG et al (2004) Trimester-specific changes in maternal thyroid hormone, thyrotropin, and thyroglobulin concentrations during gestation: trends and associations across trimesters in iodine sufficiency. Thyroid 14:1084–1090PubMedCrossRefGoogle Scholar
  183. 183.
    Soldin OP, Hilakivi-Clarke L, Weiderpass E et al (2004) Trimester-specific reference intervals for thyroxine and triiodothyronine in pregnancy in iodine-sufficient women using isotope dilution tandem mass spectrometry and immunoassays. Clin Chim Acta 349:181–189PubMedCrossRefGoogle Scholar
  184. 184.
    Holm SS, Hansen SH, Faber J et al (2004) Reference methods for the measurement of free thyroid hormones in blood: evaluation of potential reference methods for free thyroxine. Clin Biochem 37:85–93PubMedCrossRefGoogle Scholar
  185. 185.
    Thienpont LM, Beastall G, Christofides ND et al (2007) International Federation of Clinical Chemistry and Laboratory Medicine IFCC, IFCC Scientific Division Working Group for Standardization of Thyroid Function Tests WG-STFT, Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum. Clin Chem Lab Med 45:934–936PubMedGoogle Scholar
  186. 186.
    Soldin SJ, Soukhova N, Janicic N et al (2005) The measurement of free thyroxine by isotope dilution tandem mass spectrometry. Clin Chim Acta 358:113–118PubMedCrossRefGoogle Scholar
  187. 187.
    Gu J, Soldin OP, Soldin SJ (2007) Simultaneous quantification of free triiodothyronine and free thyroxine by isotope dilution tandem mass spectrometry. Clin Biochem 40:1386–1391PubMedCrossRefGoogle Scholar
  188. 188.
    Yue B, Rockwood AL, Sandrock T et al (2008) Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction–liquid chromatography/tandem mass spectrometry. Clin Chem 54:642–651PubMedCrossRefGoogle Scholar
  189. 189.
    Kahric-Janicic N, Soldin SJ, Soldin OP et al (2007) Tandem mass spectrometry improves the accuracy of free thyroxine measurements during pregnancy. Thyroid 17:303–311PubMedCrossRefGoogle Scholar
  190. 190.
    Jonklaas J, Soldin SJ (2008) Tandem mass spectrometry as a novel tool for elucidating pituitary–thyroid relationships. Thyroid 18:1303–1311PubMedCrossRefGoogle Scholar
  191. 191.
    Soldin OP, Jang M, Guo T et al (2009) Pediatric reference intervals for free thyroxine and free triiodothyronine. Thyroid 19:699–702PubMedCrossRefGoogle Scholar
  192. 192.
    Christofides ND, Midgley JE (2009) Inaccuracies in free thyroid hormone measurement by ultrafiltration and tandem mass spectrometry. Clin Chem 55:2228–2229PubMedCrossRefGoogle Scholar
  193. 193.
    Jonklaas J, Kahric-Janicic N, Soldin OP et al (2009) Correlations of free thyroid hormones measured by tandem mass spectrometry and immunoassay with thyroid-stimulating hormone across 4 patient populations. Clin Chem 55:1380–1388PubMedCrossRefGoogle Scholar
  194. 194.
    van Deventer HE, Mendu DR, Remaley AT et al (2011) Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem 57:122–127PubMedCrossRefGoogle Scholar
  195. 195.
    Soldin OP, Soldin SJ (2011) Thyroid hormone testing by tandem mass spectrometry. Clin Biochem 44:89–94PubMedCrossRefGoogle Scholar
  196. 196.
    Wang D, Stapleton HM (2010) Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 397:1831–1839PubMedCrossRefGoogle Scholar
  197. 197.
    Kunisue T, Eguchi A, Iwata H et al (2011) Analysis of thyroid hormones in serum of Baikal seals and humans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay methods: application of the LC-MS/MS method to wildlife tissues. Environ Sci Technol 45:10140–10147PubMedCrossRefGoogle Scholar
  198. 198.
    Kunisue T, Fisher JW, Kannan K (2011) Determination of six thyroid hormones in the brain and thyroid gland using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 83:417–424PubMedCrossRefGoogle Scholar
  199. 199.
    Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347:3–11PubMedCrossRefGoogle Scholar
  200. 200.
    Anderson NL, Anderson NG, Haines LR et al (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3:235–244PubMedCrossRefGoogle Scholar
  201. 201.
    Miller WG, Thienpont LM, Van Uytfanghe K et al (2009) Insulin Standardization Work Group. Toward standardization of insulin immunoassays. Clin Chem 55:1011–1018PubMedCrossRefGoogle Scholar
  202. 202.
    Rodríguez-Cabaleiro D, Van Uytfanghe K, Stove V et al (2007) Pilot study for the standardization of insulin immunoassays with isotope dilution liquid chromatography/tandem mass spectrometry. Clin Chem 53:1462–1469PubMedCrossRefGoogle Scholar
  203. 203.
    Rodríguez-Cabaleiro D, Stockl D, Kaufman JM et al (2006) Feasibility of standardisation of serum C-peptide immunoassays with isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 52:1193–1196CrossRefGoogle Scholar
  204. 204.
    Thevis M, Thomas A, Schänzer W (2011) Doping control analysis of selected peptide hormones using LC-MS(/MS). Forensic Sci Int 213:35–41PubMedCrossRefGoogle Scholar
  205. 205.
    Jeong JS, Lim HM, Kim SK et al (2011) Quantification of human growth hormone by amino acid composition analysis using isotope dilution liquid-chromatography tandem mass spectrometry. J Chromatogr A 1218:6596–6602PubMedCrossRefGoogle Scholar
  206. 206.
    Kumar V, Barnidge DR, Chen LS et al (2010) Quantification of serum 1–84 parathyroid hormone in patients with hyperparathyroidism by immunocapture in situ digestion liquid chromatography-tandem mass spectrometry. Clin Chem 56:306–313PubMedCrossRefGoogle Scholar
  207. 207.
    Hoofnagle AN, Becker JO, Wener MH et al (2008) Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 54:1796–1804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Helen P. Field
    • 1
  1. 1.Department of Specialist Laboratory MedicineSt. James’s University HospitalLeedsUK

Personalised recommendations