Skip to main content

Tandem Mass Spectrometry in Hormone Measurement

  • Protocol
  • First Online:
Hormone Assays in Biological Fluids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1065))

Abstract

Mass spectrometry methods have the potential to measure different hormones during the same analysis and have improved specificity and a wide analytical range compared with many immunoassay methods. Increasingly in clinical laboratories liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays are replacing immunoassays for the routine measurement of testosterone, 17-hydroxyprogesterone, and other steroid hormones. Reference LC-MS/MS methods for steroid, thyroid, and peptide hormones are being used for assessment of the performance and calibration of commercial immunoassays. In this chapter, the general principles of tandem mass spectrometry and examples of hormone assays are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chace DH, Millington DS, Terada N et al (1993) Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 39:66–71

    PubMed  CAS  Google Scholar 

  2. Chace DH, Kalas TA (2005) A biochemical perspective on the use of tandem mass spectrometry for newborn screening and clinical testing. Clin Biochem 38:296–309, Erratum in: Clin Biochem (2005) 38:495

    Article  PubMed  CAS  Google Scholar 

  3. Lamph SA, Halloran SP, Wheeler MJ (2009) Evidence review: healthcare applications of liquid chromatography/tandem mass spectrometry. CEP08058. Center for evidence-bassed purchasing. http://nhscep.useconnect.co.uk

  4. Shah VP, Midha KK, Findlay JWA et al (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17:1551–1557

    Article  PubMed  CAS  Google Scholar 

  5. Guidance for industry. Bioanalytical method validation, May 2001. http://www.fda.gov/cder/guidance/index.htm

  6. Viswanathan CT, Bansal S, Booth B et al (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24:1962–1973

    Article  PubMed  CAS  Google Scholar 

  7. Clinical and Laboratory Standards Institute (CLSI) (2007) Mass spectrometry in the clinical laboratory: general principles and guidance; approved guideline. CLSI document C50-A. Wayne, PA: CLSI

    Google Scholar 

  8. Honour JW (2011) Development and validation of a quantitative assay based on tandem mass spectrometry. Ann Clin Biochem 48:97–111

    Article  PubMed  CAS  Google Scholar 

  9. Leaver N (2011) A practical guide to implementing clinical mass spectrometry systems. ILM Publications, St Albans

    Google Scholar 

  10. Lee JS, Ettinger B, Stanczyk FZ et al (2006) Comparison of methods to measure low serum estradiol levels in postmenopausal women. J Clin Endocrinol Metab 91:3791–3797

    Article  PubMed  CAS  Google Scholar 

  11. Santen RJ, Demers L, Ohorodnik S et al (2007) Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 72:666–671

    Article  PubMed  CAS  Google Scholar 

  12. Courant F, Aksglaede L, Antignac JP et al (2010) Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab 95:82–92

    Article  PubMed  CAS  Google Scholar 

  13. Henion JD (2009) The origins of ion spray liquid chromatography-tandem mass spectrometry. Clin Chem 55:1234–1235

    Article  PubMed  CAS  Google Scholar 

  14. Griffiths WJ, Jonsson AP, Liu S et al (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355:545–561

    PubMed  CAS  Google Scholar 

  15. Ceglarek U, Kortz L, Leichtle A et al (2009) Rapid quantification of steroid patterns in human serum by on-line solid phase extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry. Clin Chim Acta 401:114–118

    Article  PubMed  CAS  Google Scholar 

  16. Kushnir MM, Rockwood AL, Roberts WL et al (2006) Performance characteristics of a novel tandem mass spectrometry assay for serum testosterone. Clin Chem 52:120–128

    Article  PubMed  CAS  Google Scholar 

  17. Hanold KA, Fischer SM, Cormia PH et al (2004) Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal Chem 76:2842–2851

    Article  PubMed  CAS  Google Scholar 

  18. Downard K (2004) Mass spectrometry: a foundation course. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  19. Herbert CG, Johnstone RAW (2003) Mass spectrometry basics. CRC Press LLC, Florida

    Google Scholar 

  20. http://www.appliedbiosystems.com

  21. http://www.waters.com

  22. Xu RN, Fan L, Rieser MJ et al (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal 44:342–355

    Article  PubMed  CAS  Google Scholar 

  23. Singh RJ (2008) Validation of a high throughput method for serum/plasma testosterone using liquid chromatography tandem mass spectrometry (LC-MS/MS). Steroids 73:1339–1344

    Article  PubMed  CAS  Google Scholar 

  24. Taylor PJ, Cooper DP, Gordon RD et al (2009) Measurement of aldosterone in human plasma by semiautomated HPLC-tandem mass spectrometry. Clin Chem 55:1155–1162

    Article  PubMed  CAS  Google Scholar 

  25. Vesper HW, Botelho JC (2010) Standardization of testosterone measurements in humans. J Steroid Biochem Mol Biol 121:513–519

    Article  PubMed  CAS  Google Scholar 

  26. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  PubMed  CAS  Google Scholar 

  27. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334

    Article  PubMed  CAS  Google Scholar 

  28. Kushnir MM, Rockwood AL, Nelson GJ et al (2005) Assessing analytical specificity in quantitative analysis using tandem mass spectrometry. Clin Biochem 38:319–327

    Article  PubMed  CAS  Google Scholar 

  29. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effects in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    Article  PubMed  CAS  Google Scholar 

  30. Van Eeckhaut A, Lanckmans K, Sarre S (2009) Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B 877:2198–2207

    Article  CAS  Google Scholar 

  31. Gosetti F, Mazzucco E, Zampieri D et al (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937

    Article  PubMed  CAS  Google Scholar 

  32. Duxbury K, Owen L, Gillingwate RS et al (2008) Naturally occurring isotopes of an analyte can interfere with doubly deuterated internal standard measurement. Ann Clin Biochem 45:210–212

    Article  PubMed  CAS  Google Scholar 

  33. Annesley TM (2007) Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry. Clin Chem 53:1827–1834

    Article  PubMed  CAS  Google Scholar 

  34. Napoli KL (2009) More on methanol-associated matrix effects in electrospray ionization mass spectrometry. Clin Chem 55:1250–1252

    Article  PubMed  CAS  Google Scholar 

  35. Elder PA, Lewis JG, King RI et al (2009) An anomalous result from gel tubes for vitamin D. Clin Chim Acta 410:95

    Article  PubMed  CAS  Google Scholar 

  36. Wang C, Shiraishi S, Leung A et al (2008) Validation of a testosterone and dihydrotestosterone liquid chromatography tandem mass spectrometry assay: Interference and comparison with established methods. Steroids 73:1345–1352

    Article  PubMed  CAS  Google Scholar 

  37. Jemal M, Ouyang Z, Xia YQ (2010) Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomed Chromatogr 24:2–19

    Article  PubMed  CAS  Google Scholar 

  38. Higashi T, Nishio T, Uchida S et al (2008) Simultaneous determination of 17α-hydroxypregnenolone and 17α-hydroxyprogesterone in dried blood spots from low birth weight infants using LC-MS/MS. J Pharm Biomed Anal 48:177–182

    Article  PubMed  CAS  Google Scholar 

  39. Johnson DW (2005) Ketosteroid profiling using Girard T derivatives and electrospray ioniszation tandem mass spectrometry : direct plasma analysis of androstenedione, 17-hydroxyprogesterone and cortisol. Rapid Commun Mass Spectrom 19:193–200

    Article  PubMed  CAS  Google Scholar 

  40. Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, Meikle AW et al (2006) Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 52:1559–1567

    Article  PubMed  CAS  Google Scholar 

  41. Santa T (2011) Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 25:1–10

    Article  PubMed  CAS  Google Scholar 

  42. Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19:401–407

    Article  PubMed  CAS  Google Scholar 

  43. Tan A, Hussain S, Musuku A et al (2009) Internal standard response variations during incurred sample analysis by LC-MS/MS: case by case trouble-shooting. J Chromatogr B Analyt Technol Biomed Life Sci 877:3201–3209

    Article  PubMed  CAS  Google Scholar 

  44. Bystrom CE, Salameh W, Reitz R et al (2010) Plasma renin activity by LC-MS/MS: development of a prototypical clinical assay reveals a subpopulation of human plasma samples with substantial peptidase activity. Clin Chem 56:1561–1569

    Article  PubMed  CAS  Google Scholar 

  45. Thienpont LM, Fierens C, De Leenheer AP et al (1999) Isotope dilution-gas chromatography/mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of triiodo-L-thyronine in serum. Rapid Commun Mass Spectrom 13:1924–1931

    Article  PubMed  CAS  Google Scholar 

  46. Wang S, Cyronak M, Yang E (2007) Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed Anal 43:701–707

    Article  PubMed  CAS  Google Scholar 

  47. Lindegardh N, Annerberg A, White NJ et al (2008) Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 862:227–236

    Article  PubMed  CAS  Google Scholar 

  48. NCCLS (2002) Gas chromatography/mass spectrometry (GC/MS) confirmation of drugs; approved guideline C43-A. NCCLS, Wayne, PA

    Google Scholar 

  49. Official Journal of the European Communities. Commission Decision implementing Council Directive 99/23/EC concerning the performance of analytical methods and the interpretation of results. 17 Aug 2002

    Google Scholar 

  50. Delatour T, Mottier P, Gremaud E (2007) Limits of suspicion, recognition and confirmation as concepts that account for the confirmation transitions at the detection limit for quantification by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1169:103–110

    Article  PubMed  CAS  Google Scholar 

  51. Sauvage FL, Gaulier JM, Lachâtre G et al (2008) Pitfalls and prevention strategies for liquid chromatography-tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54:1519–1527

    Article  PubMed  CAS  Google Scholar 

  52. Vogeser M, Seger C (2008) A decade of HPLC-MS/MS in the routine clinical laboratory – goals for further developments. Clin Biochem 41:649–662

    Article  PubMed  CAS  Google Scholar 

  53. Vogeser M, Kirchhoff F (2011) Progress in automation of LC-MS in laboratory medicine. Clin Biochem 44:4–13

    Article  PubMed  CAS  Google Scholar 

  54. Netzel BC, Cradic KW, Bro ET et al (2011) Increasing liquid chromatography-tandem mass spectrometry throughput by mass tagging: a sample-multiplexed high-throughput assay for 25-hydroxyvitamin D2 and D3. Clin Chem 57:431–440

    Article  PubMed  CAS  Google Scholar 

  55. http://www.agilent.com

  56. Himmelsbach M (2012) 10 Years of MS instrumental developments—impact on LC-MS/MS in clinical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:3–17

    PubMed  Google Scholar 

  57. Shackleton C (2010) Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 121:481–490

    Article  PubMed  CAS  Google Scholar 

  58. Krone N, Hughes BA, Lavery GG et al (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC-MS/MS). J Steroid Biochem Mol Biol 121:496–504

    Article  PubMed  CAS  Google Scholar 

  59. Tai SS, Welch MJ (2004) Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope dilution liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Anal Chem 76:1008–1014

    Article  PubMed  CAS  Google Scholar 

  60. Tai SS, Welch MJ (2005) Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 77:6359–6363

    Article  PubMed  CAS  Google Scholar 

  61. Tai SS, Xu B, Welch MJ (2006) Development and evaluation of a candidate reference measurement procedure for the determination of progesterone in human serum using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 78:6628–6633

    Article  PubMed  CAS  Google Scholar 

  62. Tai SS, Xu B, Welch MJ et al (2007) Development and evaluation of a candidate reference measurement procedure for the determination of testosterone in human serum using isotope dilution liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 388:1087–1094

    Article  PubMed  CAS  Google Scholar 

  63. Rauh M (2009) Steroid measurement with LC-MS/MS in pediatric endocrinology. Mol Cell Endocrinol 301:272–281

    Article  PubMed  CAS  Google Scholar 

  64. Stanczyk FZ, Clarke NJ (2010) Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol 121:491–495

    Article  PubMed  CAS  Google Scholar 

  65. Kushnir MM, Rockwood AL, Bergquist J (2010) Liquid chromatography-tandem mass spectrometry applications in endocrinology. Mass Spectrom Rev 29:480–502

    Article  PubMed  CAS  Google Scholar 

  66. Kushnir MM, Rockwood AL, Roberts WL et al (2011) Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem 44:77–88

    Article  PubMed  CAS  Google Scholar 

  67. Carvalho VM (2011) The coming of age of liquid chromatography coupled to tandem mass spectrometry in the endocrinology laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883–884:50–58

    PubMed  Google Scholar 

  68. Taieb J, Mathian B, Millot F et al (2003) Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography–mass spectrometry in sera from 116 men, women, and children. Clin Chem 49:1381–1395

    Article  PubMed  CAS  Google Scholar 

  69. Wang C, Catlin DH, Demers LM et al (2004) Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 89:534–543

    Article  PubMed  CAS  Google Scholar 

  70. Thienpont LM, Van Uytfanghe K, Blincko S et al (2008) State-of-the-art of serum testosterone measurement by isotope dilution-liquid chromatography-tandem mass spectrometry. Clin Chem 54:1290–1297

    Article  PubMed  CAS  Google Scholar 

  71. Vesper HW, Bhasin S, Wang C et al (2009) Interlaboratory comparison study of serum total testosterone [corrected] measurements performed by mass spectrometry methods. Steroids 74:498–503, Erratum in: Steroids. 200974(9):791

    Article  PubMed  CAS  Google Scholar 

  72. Vesper HW, Botelho JC, Shacklady C et al (2008) CDC project on standardizing steroid hormone measurements. Steroids 73:1286–1292

    Article  PubMed  CAS  Google Scholar 

  73. Soldin OP, Sharma H, Husted L et al (2009) Pediatric reference intervals for aldosterone, 17α-hydroxyprogesterone, dehydroepiandrosterone, testosterone and 25-hydroxy vitamin D3 using tandem mass spectrometry. Clin Biochem 42:823–827

    Article  PubMed  CAS  Google Scholar 

  74. Kushnir MM, Blamires T, Rockwood AL et al (2010) Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin Chem 56:1138–1147

    Article  PubMed  CAS  Google Scholar 

  75. Barth JH, Field HP, Yasmin E et al (2010) Defining hyperandrogenism in polycystic ovary syndrome: measurement of testosterone and androstenedione by liquid chromatography-tandem mass spectrometry and analysis by receiver operator characteristic plots. Eur J Endocrinol 162:611–615

    Article  PubMed  CAS  Google Scholar 

  76. Haring R, Hannemann A, John U et al (2012) Age-specific reference ranges for serum testosterone and androstenedione concentrations in women measured by liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 97:408–415

    Article  PubMed  CAS  Google Scholar 

  77. Herold DA, Fitzgerald RL (2003) Immunoassays for testosterone in women: better than a guess? Clin Chem 49:1250–1251

    Article  PubMed  CAS  Google Scholar 

  78. Matsumoto AM, Bremner WJ (2004) Serum testosterone assays–accuracy matters. J Clin Endocrinol Metab 89:520–524

    Article  PubMed  CAS  Google Scholar 

  79. Bhasin S, Wu F (2006) Making a diagnosis of androgen deficiency in adult men: what to do until all the facts are in? Nat Clin Pract Endocrinol Metab 2:529

    Article  PubMed  Google Scholar 

  80. Rosner W, Auchus RJ, Azziz R et al (2007) Position statement: utility, limitations, and pitfalls in measuring testosterone: an Endocrine Society position statement. J Clin Endocrinol Metab 92:405–413

    Article  PubMed  CAS  Google Scholar 

  81. Rosner W, Vesper H (2010) Endocrine Society; American Association for Clinical Chemistry; American Association of Clinical Endocrinologists; Androgen Excess/PCOS Society; American Society for Bone and Mineral Research; American Society for Reproductive Medicine; American Urological Association; Association of Public Health Laboratories; Endocrine Society; Laboratory Corporation of America; North American Menopause Society; Pediatric Endocrine Society. Toward excellence in testosterone testing: a consensus statement. J Clin Endocrinol Metab 95:4542–4548

    Article  PubMed  CAS  Google Scholar 

  82. Cawood ML, Field HP, Ford CF et al (2005) Testosterone measurement by isotope-dilution liquid chromatography-tandem mass spectrometry: validation of a method for routine clinical practice. Clin Chem 51:1472–1479

    Article  PubMed  CAS  Google Scholar 

  83. Moal V, Mathieu E, Reynier P et al (2007) Low serum testosterone assayed by liquid chromatography-tandem mass spectrometry. Comparison with five immunoassay techniques. Clin Chim Acta 386:12–19

    Article  PubMed  CAS  Google Scholar 

  84. Gallagher LM, Owen LJ, Keevil BG (2007) Simultaneous determination of androstenedione and testosterone in human serum by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 44:48–56

    Article  PubMed  CAS  Google Scholar 

  85. Borrey D, Moerman E, Cockx A et al (2007) Column-switching LC-MS/MS analysis for quantitative determination of testosterone in human serum. Clin Chim Acta 382:134–137

    Article  PubMed  CAS  Google Scholar 

  86. Turpeinen U, Linko S, Itkonen O et al (2008) Determination of testosterone in serum by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest 68:50–57

    Article  PubMed  CAS  Google Scholar 

  87. Chen Y, Yazdanpanah M, Hoffman BR et al (2009) Rapid determination of serum testosterone by liquid chromatography-isotope dilution tandem mass spectrometry and a split sample comparison with three automated immunoassays. Clin Biochem 42:484–490

    Article  PubMed  CAS  Google Scholar 

  88. Bui HN, Struys EA, Martens F et al (2010) Serum testosterone levels measured by isotope dilution-liquid chromatography-tandem mass spectrometry in postmenopausal women versus those in women who underwent bilateral oophorectomy. Ann Clin Biochem 47:248–252

    Article  PubMed  CAS  Google Scholar 

  89. Salameh WA, Redor-Goldman MM, Clarke NJ et al (2010) Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry: total and free testosterone reference ranges. Steroids 75:169–175

    Article  PubMed  CAS  Google Scholar 

  90. Fitzgerald RL, Griffin TL, Herold DA (2010) Analysis of testosterone in serum using mass spectrometry. Methods Mol Biol 603:489–500

    Article  PubMed  CAS  Google Scholar 

  91. Chen Y, Yazdanpanah M, Wang XY et al (2010) Direct measurement of serum free testosterone by ultrafiltration followed by liquid chromatography tandem mass spectrometry. Clin Biochem 43:490–496

    Article  PubMed  CAS  Google Scholar 

  92. Bhasin S, Pencina M, Jasuja GK et al (2011) Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J Clin Endocrinol Metab 96:2430–2439

    Article  PubMed  CAS  Google Scholar 

  93. Shiraishi S, Lee PW, Leung A et al (2008) Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography-tandem mass spectrometry. Clin Chem 54:1855–1863

    Article  PubMed  CAS  Google Scholar 

  94. Kulle AE, Riepe FG, Melchior D et al (2010) A novel ultrapressure liquid chromatography tandem mass spectrometry method for the simultaneous determination of androstenedione, testosterone, and dihydrotestosterone in pediatric blood samples: age- and sex-specific reference data. J Clin Endocrinol Metab 95:2399–2409

    Article  PubMed  CAS  Google Scholar 

  95. Licea-Perez H, Wang S, Szapacs ME et al (2008) Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5alpha-dihydrotestosterone in human serum to support testosterone replacement therapy for hypogonadism. Steroids 73:601–610

    Article  PubMed  CAS  Google Scholar 

  96. Rauh M, Groschl M, Rascher W et al (2006) Automated, fast and sensitive quantification of androstenedione, 17-hydroxyprogesterone and testosterone by tandem mass spectrometry with on-line extraction. Steroids 71:450–458

    Article  PubMed  CAS  Google Scholar 

  97. Guo T, Taylor RL, Singh RJ et al (2006) Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin Chim Acta 372:76–82

    Article  PubMed  CAS  Google Scholar 

  98. Rossi C, Calton L, Hammond G et al (2010) Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin Chim Acta 411:222–228

    Article  PubMed  CAS  Google Scholar 

  99. Janzen N, Sander S, Terhardt M et al (2008) Fast and direct quantification of adrenal steroids by tandem mass spectrometry in serum and dried blood spots. J Chromatogr B Analyt Technol Biomed Life Sci 861:117–122

    Article  PubMed  CAS  Google Scholar 

  100. Lewis JG (2006) Steroid analysis in saliva: an overview. Clin Biochem Rev 27:139–146

    PubMed  Google Scholar 

  101. Gröschl M (2008) Current status of salivary hormone analysis. Clin Chem 54:1759–1769

    Article  PubMed  CAS  Google Scholar 

  102. Wood P (2009) Salivary steroid assays—research or routine? Ann Clin Biochem 46:183–196

    Article  PubMed  CAS  Google Scholar 

  103. Matsui F, Koh E, Yamamoto K et al (2009) Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for simultaneous measurement of salivary testosterone and cortisol in healthy men for utilization in the diagnosis of late-onset hypogonadism in males. Endocr J 56:1083–1093

    Article  PubMed  CAS  Google Scholar 

  104. Macdonald PR, Owen LJ, Wu FC et al (2011) A liquid chromatography-tandem mass spectrometry method for salivary testosterone with adult male reference interval determination. Clin Chem 57:774–775

    Article  PubMed  CAS  Google Scholar 

  105. Jensen MA, Hansen AM, Abrahamsson P et al (2011) Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone. J Chromatogr B Analyt Technol Biomed Life Sci 879:2527–2532

    Article  PubMed  CAS  Google Scholar 

  106. Hintikka L, Kuuranne T, Leinonen A et al (2008) Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J Mass Spectrom 43:965–973

    Article  PubMed  CAS  Google Scholar 

  107. Bowers LD (1997) Analytical advances in detection of performance-enhancing compounds. Clin Chem 43:1299–1304

    PubMed  CAS  Google Scholar 

  108. Saudan C, Entenza JM, Baume N et al (2006) Short-term stability of testosterone and epitestosterone conjugates in urine samples: quantification by liquid chromatography-linear ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 844:168–174

    Article  PubMed  CAS  Google Scholar 

  109. Danaceau JP, Scott Morrison M, Slawson MH (2008) Quantitative confirmation of testosterone and epitestosterone in human urine by LC/Q-ToF mass spectrometry for doping control. J Mass Spectrom 43:993–1000

    Article  PubMed  CAS  Google Scholar 

  110. Chang YC, Li CM, Li LA et al (2003) Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst 128:363–368

    Article  PubMed  CAS  Google Scholar 

  111. Kalhorn TF, Page ST, Howald WN et al (2007) Analysis of testosterone and dihydrotestosterone from biological fluids as the oxime derivatives using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:3200–3206

    Article  PubMed  CAS  Google Scholar 

  112. Lih FB, Titus MA, Mohler JL et al (2010) Atmospheric pressure photoionization tandem mass spectrometry of androgens in prostate cancer. Anal Chem 82:6000–6007

    Article  PubMed  CAS  Google Scholar 

  113. Rothman MS, Carlson NE, Xu M et al (2011) Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids 76:177–182

    Article  PubMed  CAS  Google Scholar 

  114. Yamashita K, Miyashiro Y, Maekubo H et al (2009) Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 74:920–926

    Article  PubMed  CAS  Google Scholar 

  115. Choi MH, Kim JN, Chung BC (2003) Rapid HPLC-electrospray tandem mass spectrometric assay for urinary testosterone and dihydrotestosterone glucuronides from patients with benign prostate hyperplasia. Clin Chem 49:322–325

    Article  PubMed  CAS  Google Scholar 

  116. Lehotay DC, Hall P, Lepage J et al (2011) LC-MS/MS progress in newborn screening. Clin Biochem 44:21–31

    Article  PubMed  CAS  Google Scholar 

  117. Makela SK, Ellis G (1988) Nonspecificity of a direct 17 alpha-hydroxyprogesterone radioimmunoassay kit when used with samples from neonates. Clin Chem 34:2070–2075

    PubMed  CAS  Google Scholar 

  118. Wong W, Shackleton CHL, Covey TR et al (1992) Identification of the steroids in neonatal plasma that interfere with 17-alphahydroxyprogesterone radioimmunoassays. Clin Chem 38:1830–1837

    PubMed  CAS  Google Scholar 

  119. Marsden D, Larson CA (2004) Emerging role for tandem mass spectrometry in detecting congenital adrenal hyperplasia. Clin Chem 50:467–468

    Article  PubMed  CAS  Google Scholar 

  120. Minutti CZ, Lacey JM, Magera MJ et al (2004) Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J Clin Endocrin Metab 89:3687–3693

    Article  CAS  Google Scholar 

  121. Lacey JM, Minutti CZ, Magera MJ et al (2004) Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin Chem 50:621–625

    Article  PubMed  CAS  Google Scholar 

  122. Schwarz E, Liu A, Randall H et al (2009) Use of steroid profiling by UPLC-MS/MS as a second tier test in newborn screening for congenital adrenal hyperplasia: the Utah experience. Pediatr Res 66:230–235

    Article  PubMed  CAS  Google Scholar 

  123. Janzen N, Peter S, Sander U et al (2007) Newborn screening for congenital adrenal hyperplasia: additional steroid profile using liquid chromatography-tandem mass spectrometry. J Clin Endocrin Metab 92:2581–2589

    Article  CAS  Google Scholar 

  124. Janzen N, Sander S, Terhardt M et al (2011) Rapid steroid hormone quantification for congenital adrenal hyperplasia (CAH) in dried blood spots using UPLC liquid chromatography-tandem mass spectrometry. Steroids 76:1437–1442

    Article  PubMed  CAS  Google Scholar 

  125. Dhillon K, Ho T, Rich P et al (2011) An automated method on analysis of blood steroids using liquid chromatography tandem mass spectrometry: application to population screening for congenital adrenal hyperplasia in newborns. Clin Chim Acta 412:2076–2084

    Article  PubMed  CAS  Google Scholar 

  126. Wudy SA, Hartmann M, Svoboda M (2000) Determination of 17-hydroxyprogesterone in plasma by stable isotope dilution/benchtop liquid chromatography- tandem mass spectrometry. Horm Res 53:68–71

    Article  PubMed  CAS  Google Scholar 

  127. Kao PC, Machacek DA, Magera MJ et al (2001) Diagnosis of adrenal cortical dysfunction by liquid chromatography-tandem mass spectrometry. Ann Clin Lab Sci 31:199–204

    PubMed  CAS  Google Scholar 

  128. Turpeinen U, Itkonen O, Ahola L et al (2005) Determination of 17α-hydroxyprogesterone in serum by liquid chromatography-tandem mass spectrometry and immunoassay. Scand J Clin Lab Invest 65:3–12

    Article  PubMed  CAS  Google Scholar 

  129. Holst JP, Soldin SJ, Tractenberg RE et al (2007) Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids 72:71–84

    Article  PubMed  CAS  Google Scholar 

  130. Carvalho VM, Nakamura OH, Vieira JGH (2008) Simultaneous quantitation of seven endogenous C-21 adrenal steroids by liquid chromatography tandem mass spectrometry in human serum. J Chromatogr B 872:154–161

    Article  CAS  Google Scholar 

  131. Fanelli F, Belluomo I, Di Lallo VD et al (2011) Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 76:244–253

    Article  PubMed  CAS  Google Scholar 

  132. Peter M, Janzen N, Sander S et al (2008) A case of 11beta-hydroxylase deficiency detected in a newborn screening program by second-tier LC-MS/MS. Horm Res 69:253–256

    Article  PubMed  CAS  Google Scholar 

  133. Vogeser M, Briegel J, Jacob K (2001) Determination of serum cortisol by isotope-dilution liquid-chromatography electrospray ionization tandem mass spectrometry with on-line extraction. Clin Chem Lab Med 39:944–947

    Article  PubMed  CAS  Google Scholar 

  134. Kushnir MM, Neilson R, Roberts WL et al (2004) Cortisol and cortisone analysis in serum and plasma by atmospheric pressure photoionization tandem mass spectrometry. Clin Biochem 37:357–362

    Article  PubMed  CAS  Google Scholar 

  135. Monaghan PJ, Owen LJ, Trainer PJ et al (2011) Comparison of serum cortisol measurement by immunoassay and liquid chromatography-tandem mass spectrometry in patients receiving the 11β-hydroxylase inhibitor metyrapone. Ann Clin Biochem 48:441–446

    Article  PubMed  CAS  Google Scholar 

  136. Ray JA, Kushnir MM, Rockwood AL et al (2011) Analysis of cortisol, cortisone and dexamethasone in human serum using liquid chromatography tandem mass spectrometry and assessment of cortisol: cortisone ratios in patients with impaired kidney function. Clin Chim Acta 412:1221–1228

    Article  PubMed  CAS  Google Scholar 

  137. Vogeser M, Groetzner J, Küpper C et al (2003) Free serum cortisol during the postoperative acute phase response determined by equilibrium dialysis liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 41:146–151

    PubMed  CAS  Google Scholar 

  138. Ionita IA, Akhlaghi F (2010) Quantification of unbound prednisolone, prednisone, cortisol and cortisone in human plasma by ultrafiltration and direct injection into liquid chromatrography tandem mass spectrometry. Ann Clin Biochem 47:350–357

    Article  PubMed  CAS  Google Scholar 

  139. Kirchhoff F, Briegel J, Vogeser M (2011) Quantification of free serum cortisol based on equilibrium dialysis and isotope dilution-liquid chromatography-tandem mass spectrometry. Clin Biochem 44:894–899

    Article  PubMed  CAS  Google Scholar 

  140. Pretorius CJ, Galligan JP, McWhinney BC et al (2011) Free cortisol method comparison: ultrafiltation, equilibrium dialysis, tracer dilution, tandem mass spectrometry and calculated free cortisol. Clin Chim Acta 412:1043–1047

    Article  PubMed  CAS  Google Scholar 

  141. Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography-tandem mass spectrometry method for urinary cortisol and cortisone. Clin Chem 48:1511–1519

    PubMed  CAS  Google Scholar 

  142. Kushnir MM, Rockwood AL, Nelson GJ et al (2003) Liquid chromatography-tandem mass spectrometry analysis of urinary free cortisol. Clin Chem 49:965–967

    Article  PubMed  CAS  Google Scholar 

  143. Meikle AW, Findling J, Kushnir MM et al (2003) Pseudo-Cushing syndrome caused by fenofibrate interference with urinary cortisol assayed by high-performance liquid chromatography. J Clin Endocrinol Metab 88:3521–3524

    Article  PubMed  CAS  Google Scholar 

  144. McCann SJ, Gillingwater S, Keevil BG (2005) Measurement of urinary free cortisol using liquid chromatography-tandem mass spectrometry: comparison with the urine adapted ACS:180 serum cortisol chemiluminescent immunoassay and development of a new reference range. Ann Clin Biochem 42:112–118

    Article  PubMed  CAS  Google Scholar 

  145. Wood L, Ducroq DH, Fraser HL et al (2008) Measurement of urinary free cortisol by tandem mass spectrometry and comparison with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Ann Clin Biochem 45:380–388

    Article  PubMed  CAS  Google Scholar 

  146. Persichilli S, Gervasoni J, Iavarone F et al (2010) A simple liquid chromatography-tandem mass spectrometry method for urinary free cortisol analysis: suitable for routine purpose. Clin Chem Lab Med 48:1433–1437

    Article  PubMed  CAS  Google Scholar 

  147. Jönsson BA, Malmberg B, Amilon A et al (2003) Determination of cortisol in human saliva using liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 784:63–68

    Article  PubMed  Google Scholar 

  148. Perogamvros I, Owen LJ, Keevil BG et al (2010) Measurement of salivary cortisol with liquid chromatography-tandem mass spectrometry in patients undergoing dynamic endocrine testing. Clin Endocrinol 72:17–21

    Article  CAS  Google Scholar 

  149. Perogamvros I, Owen LJ, Newell-Price J et al (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Analyt Technol Biomed Life Sci 877:3771–3775

    Article  PubMed  CAS  Google Scholar 

  150. Turpeinen U, Välimäki MJ, Hämäläinen E (2009) Determination of salivary cortisol by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest 69:592–597

    Article  PubMed  CAS  Google Scholar 

  151. Owen LJ, Haslam S, Adaway JE et al (2010) A simplified liquid chromatography tandem mass spectrometry assay, using on-line solid-phase extraction, for the quantitation of cortisol in saliva and comparison with a routine DELFIA method. Ann Clin Biochem 47:131–136

    Article  PubMed  CAS  Google Scholar 

  152. Raff H (2009) Utility of salivary cortisol measurements in Cushing’s syndrome and adrenal insufficiency. J Clin Endocrinol Metab 94:3647–3655

    Article  PubMed  CAS  Google Scholar 

  153. Baikd SK, Sinaii N, Wade M et al (2007) Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: a comparison of assays to establish hypercortisolism. J Clin Endocrinol Metab 92:3102–3310

    Article  CAS  Google Scholar 

  154. Zerikly RK, Amiri L, Faiman C et al (2010) Diagnostic characteristics of late-night salivary cortisol using liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 95:4555–4559

    Article  PubMed  CAS  Google Scholar 

  155. Erickson D, Singh RJ, Sathananthan A et al (2012) Late-night salivary cortisol for diagnosis of Cushing’s syndrome by liquid chromatography/tandem mass spectrometry assay. Clin Endocrinol 76:467–472

    Article  CAS  Google Scholar 

  156. Taylor RL, Grebe SK, Singh RJ (2004) Quantitative, highly sensitive liquid chromatography-tandem mass spectrometry method for detection of synthetic corticosteroids. Clin Chem 50:2345–2352

    Article  PubMed  CAS  Google Scholar 

  157. Frerichs VA, Tornatore KM (2004) Determination of the glucocorticoids prednisone, prednisolone, dexamethasone, and cortisol in human serum using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 802:329–338

    Article  PubMed  CAS  Google Scholar 

  158. Mazzarino M, Turi S, Botrè F (2008) A screening method for the detection of synthetic glucocorticosteroids in human urine by liquid chromatography-mass spectrometry based on class-characteristic fragmentation pathways. Anal Bioanal Chem 390:1389–1402

    Article  PubMed  CAS  Google Scholar 

  159. Difrancesco R, Frerichs V, Donnelly J et al (2007) Simultaneous determination of cortisol, dexamethasone, methylprednisolone, prednisone, prednisolone, mycophenolic acid and mycophenolic acid glucuronide in human plasma utilizing liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 859:42–51

    Article  PubMed  CAS  Google Scholar 

  160. McWhinney BC, Briscoe SE, Ungerer JP et al (2010) Measurement of cortisol, cortisone, prednisolone, dexamethasone and 11-deoxycortisol with ultra high performance liquid chromatography-tandem mass spectrometry: Application for plasma, plasma ultrafiltrate, urine and saliva in a routine laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 878:2863–2869

    Article  PubMed  CAS  Google Scholar 

  161. Ruiter AF, Teeninga N, Nauta J, Endert E, Ackermans MT et al (2012) Determination of unbound prednisolone, prednisone and cortisol in human serum and saliva by on-line solid-phase extraction liquid chromatography tandem mass spectrometry and potential implications for drug monitoring of prednisolone and prednisone in saliva. Biomed Chromatogr 26(7):789–796. doi:10.1002/bmc.1730

    Article  PubMed  CAS  Google Scholar 

  162. Middle JG, Kane JW (2009) Oestradiol assays: fitness for purpose? Ann Clin Biochem 46:441–456

    Article  PubMed  CAS  Google Scholar 

  163. Nelson RE, Grebe SK, Okane DJ et al (2004) Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clin Chem 50:373–384

    Article  PubMed  CAS  Google Scholar 

  164. Kushnir MM, Rockwood AL, Bergquist J et al (2008) High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. Am J Clin Pathol 129:530–539

    Article  PubMed  CAS  Google Scholar 

  165. Kushnir MM, Rockwood AL, Yue B et al (2010) High sensitivity measurement of estrone and estradiol in serum and plasma using LC-MS/MS. Methods Mol Biol 603:219–228

    Article  PubMed  CAS  Google Scholar 

  166. Ankarberg-Lindgren C, Norjavaara E (2009) Are estradiol results determined by the tandem mass spectrometry assay clinically useful for children? Am J Clin Pathol 131:746–747

    Article  PubMed  Google Scholar 

  167. Xu X, Roman JM, Issaq HJ et al (2007) Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem 79:7813–7821

    Article  PubMed  CAS  Google Scholar 

  168. Yamashita K, Okuyama M, Watanabe Y et al (2007) Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 72:819–827

    Article  PubMed  CAS  Google Scholar 

  169. Blair IA (2010) Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids 75:297–306

    Article  PubMed  CAS  Google Scholar 

  170. Funder JW, Carey RM, Fardella C et al (2008) Endocrine Society. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93:3266–3281

    Article  PubMed  CAS  Google Scholar 

  171. Prome D, Viger A, Marquet A (1988) Use of tandem mass spectrometry (MS-MS) for aldosterone assay at the nanogram level in complex biological mixtures. Anal Biochem 172:264–269

    Article  PubMed  CAS  Google Scholar 

  172. Fredline VF, Taylor PJ, Dodds HM et al (1997) A reference method for the analysis of aldosterone in blood by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Anal Biochem 252:308–313

    Article  PubMed  CAS  Google Scholar 

  173. Yamashita K, Okuyama M, Nakagawa R et al (2008) Development of sensitive derivatization method for aldosterone in liquid chromatography-electrospray ionization tandem mass spectrometry of corticosteroids. J Chromatogr A 1200:114–121

    Article  PubMed  CAS  Google Scholar 

  174. Turpeinen U, Hämäläinen E, Stenman UH et al (2008) Determination of aldosterone in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 862:113–118

    Article  PubMed  CAS  Google Scholar 

  175. Taylor PJ, van Rosendal SP, Coombes JS et al (2010) Simultaneous measurement of aldosterone and cortisol by high-performance liquid chromatography-tandem mass spectrometry: application to dehydration-rehydration studies. J Chromatogr B Analyt Technol Biomed Life Sci 878:1195–1198

    Article  PubMed  CAS  Google Scholar 

  176. Fredline VF, Kovacs EM, Taylor PJ et al (1999) Measurement of plasma renin activity with use of HPLC-electrospray-tandem mass spectrometry. Clin Chem 45:659–664

    PubMed  CAS  Google Scholar 

  177. Thienpont LM, Van Uytfanghe K, Van Houcke S (2010) IFCC Working Group for Standardization of Thyroid Function Tests (WG-STFT). Standardization activities in the field of thyroid function tests: a status report. Clin Chem Lab Med 48:1577–1583

    Article  PubMed  CAS  Google Scholar 

  178. De Brabandere VI, Hou P, Stöckl D et al (1998) Isotope dilution-liquid chromatography/electrospray ionization-tandem mass spectrometry for the determination of serum thyroxine as a potential reference method. Rapid Commun Mass Spectrom 12:1099–1103

    Article  PubMed  Google Scholar 

  179. Tai SS, Bunk DM, White E et al (2004) Development and evaluation of a reference measurement procedure for the determination of total 3,3′,5-triiodothyronine in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 76:5092–5096, 5th

    Article  PubMed  CAS  Google Scholar 

  180. Soukhova N, Soldin OP, Soldin SJ (2004) Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta 343:185–190

    Article  PubMed  CAS  Google Scholar 

  181. Soldin OP, Tractenberg RE, Soldin SJ (2004) Differences between measurements of T4 and T3 in pregnant and nonpregnant women using isotope dilution tandem mass spectrometry and immunoassays: are there clinical implications? Clin Chim Acta 347:61–69

    Article  PubMed  CAS  Google Scholar 

  182. Soldin OP, Tractenberg RE, Hollowell JG et al (2004) Trimester-specific changes in maternal thyroid hormone, thyrotropin, and thyroglobulin concentrations during gestation: trends and associations across trimesters in iodine sufficiency. Thyroid 14:1084–1090

    Article  PubMed  CAS  Google Scholar 

  183. Soldin OP, Hilakivi-Clarke L, Weiderpass E et al (2004) Trimester-specific reference intervals for thyroxine and triiodothyronine in pregnancy in iodine-sufficient women using isotope dilution tandem mass spectrometry and immunoassays. Clin Chim Acta 349:181–189

    Article  PubMed  CAS  Google Scholar 

  184. Holm SS, Hansen SH, Faber J et al (2004) Reference methods for the measurement of free thyroid hormones in blood: evaluation of potential reference methods for free thyroxine. Clin Biochem 37:85–93

    Article  PubMed  CAS  Google Scholar 

  185. Thienpont LM, Beastall G, Christofides ND et al (2007) International Federation of Clinical Chemistry and Laboratory Medicine IFCC, IFCC Scientific Division Working Group for Standardization of Thyroid Function Tests WG-STFT, Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum. Clin Chem Lab Med 45:934–936

    PubMed  CAS  Google Scholar 

  186. Soldin SJ, Soukhova N, Janicic N et al (2005) The measurement of free thyroxine by isotope dilution tandem mass spectrometry. Clin Chim Acta 358:113–118

    Article  PubMed  CAS  Google Scholar 

  187. Gu J, Soldin OP, Soldin SJ (2007) Simultaneous quantification of free triiodothyronine and free thyroxine by isotope dilution tandem mass spectrometry. Clin Biochem 40:1386–1391

    Article  PubMed  CAS  Google Scholar 

  188. Yue B, Rockwood AL, Sandrock T et al (2008) Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction–liquid chromatography/tandem mass spectrometry. Clin Chem 54:642–651

    Article  PubMed  CAS  Google Scholar 

  189. Kahric-Janicic N, Soldin SJ, Soldin OP et al (2007) Tandem mass spectrometry improves the accuracy of free thyroxine measurements during pregnancy. Thyroid 17:303–311

    Article  PubMed  CAS  Google Scholar 

  190. Jonklaas J, Soldin SJ (2008) Tandem mass spectrometry as a novel tool for elucidating pituitary–thyroid relationships. Thyroid 18:1303–1311

    Article  PubMed  CAS  Google Scholar 

  191. Soldin OP, Jang M, Guo T et al (2009) Pediatric reference intervals for free thyroxine and free triiodothyronine. Thyroid 19:699–702

    Article  PubMed  CAS  Google Scholar 

  192. Christofides ND, Midgley JE (2009) Inaccuracies in free thyroid hormone measurement by ultrafiltration and tandem mass spectrometry. Clin Chem 55:2228–2229

    Article  PubMed  CAS  Google Scholar 

  193. Jonklaas J, Kahric-Janicic N, Soldin OP et al (2009) Correlations of free thyroid hormones measured by tandem mass spectrometry and immunoassay with thyroid-stimulating hormone across 4 patient populations. Clin Chem 55:1380–1388

    Article  PubMed  CAS  Google Scholar 

  194. van Deventer HE, Mendu DR, Remaley AT et al (2011) Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem 57:122–127

    Article  PubMed  CAS  Google Scholar 

  195. Soldin OP, Soldin SJ (2011) Thyroid hormone testing by tandem mass spectrometry. Clin Biochem 44:89–94

    Article  PubMed  CAS  Google Scholar 

  196. Wang D, Stapleton HM (2010) Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 397:1831–1839

    Article  PubMed  CAS  Google Scholar 

  197. Kunisue T, Eguchi A, Iwata H et al (2011) Analysis of thyroid hormones in serum of Baikal seals and humans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay methods: application of the LC-MS/MS method to wildlife tissues. Environ Sci Technol 45:10140–10147

    Article  PubMed  CAS  Google Scholar 

  198. Kunisue T, Fisher JW, Kannan K (2011) Determination of six thyroid hormones in the brain and thyroid gland using isotope-dilution liquid chromatography/tandem mass spectrometry. Anal Chem 83:417–424

    Article  PubMed  CAS  Google Scholar 

  199. Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347:3–11

    Article  PubMed  CAS  Google Scholar 

  200. Anderson NL, Anderson NG, Haines LR et al (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3:235–244

    Article  PubMed  CAS  Google Scholar 

  201. Miller WG, Thienpont LM, Van Uytfanghe K et al (2009) Insulin Standardization Work Group. Toward standardization of insulin immunoassays. Clin Chem 55:1011–1018

    Article  PubMed  CAS  Google Scholar 

  202. Rodríguez-Cabaleiro D, Van Uytfanghe K, Stove V et al (2007) Pilot study for the standardization of insulin immunoassays with isotope dilution liquid chromatography/tandem mass spectrometry. Clin Chem 53:1462–1469

    Article  PubMed  CAS  Google Scholar 

  203. Rodríguez-Cabaleiro D, Stockl D, Kaufman JM et al (2006) Feasibility of standardisation of serum C-peptide immunoassays with isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 52:1193–1196

    Article  Google Scholar 

  204. Thevis M, Thomas A, Schänzer W (2011) Doping control analysis of selected peptide hormones using LC-MS(/MS). Forensic Sci Int 213:35–41

    Article  PubMed  CAS  Google Scholar 

  205. Jeong JS, Lim HM, Kim SK et al (2011) Quantification of human growth hormone by amino acid composition analysis using isotope dilution liquid-chromatography tandem mass spectrometry. J Chromatogr A 1218:6596–6602

    Article  PubMed  CAS  Google Scholar 

  206. Kumar V, Barnidge DR, Chen LS et al (2010) Quantification of serum 1–84 parathyroid hormone in patients with hyperparathyroidism by immunocapture in situ digestion liquid chromatography-tandem mass spectrometry. Clin Chem 56:306–313

    Article  PubMed  CAS  Google Scholar 

  207. Hoofnagle AN, Becker JO, Wener MH et al (2008) Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 54:1796–1804

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Field, H.P. (2013). Tandem Mass Spectrometry in Hormone Measurement. In: Wheeler, M. (eds) Hormone Assays in Biological Fluids. Methods in Molecular Biology, vol 1065. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-616-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-616-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-615-3

  • Online ISBN: 978-1-62703-616-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics