Advertisement

Measurement of Melatonin and 6-Sulphatoxymelatonin

  • Benita Middleton
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1065)

Abstract

Melatonin is an indole hormone secreted by the pineal gland during the hours of darkness in a normally entrained individual. There is a clear circadian rhythm in its production with low levels during the day and a peak in the early hours of the morning. The timing of sample collection is crucial and single time point measurements are of little use. Measurement of melatonin or its major metabolite, 6-sulphatoxymelatonin, is normally carried out to determine the timing of an individual’s internal body clock and whether it is synchronized to the 24 h day. Misalignment of the clock or disruption of the rhythm can lead to difficulties in sleeping and health problems such as are associated with jet-lag or shift work. Both melatonin and 6-sulphatoxymelatonin can be measured by RIA or ELISA. Details of sample collection and preparation and the assay procedures are described.

Key words

Melatonin 6-Sulphatoxymelatonin Radioimmunoassay Circadian rhythm Internal body clock Rhythm disorders Shift work Pineal 

References

  1. 1.
    Moller M, Baeres FMM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309:139–150PubMedCrossRefGoogle Scholar
  2. 2.
    Arendt J (2006) The pineal gland: basic physiology and clinical implications. In: Groot D (ed) Endocrinology, 5th edn. Saunders Elsevier, Philadelphia, PA, pp 557–575Google Scholar
  3. 3.
    Arendt J (1995) Melatonin and the mammalian pineal gland. Chapman and Hall, LondonGoogle Scholar
  4. 4.
    Weissbach H, Redfield BG, Axelrod J (1960) Biosynthesis of melatonin: enzymatic conversion of serotonin to N-acetylserotonin. Biochim Biophys Acta 43:352–353PubMedCrossRefGoogle Scholar
  5. 5.
    Klein DC, Weller J (1970) Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169:1093–1095PubMedCrossRefGoogle Scholar
  6. 6.
    Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-o-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174:245–262PubMedCrossRefGoogle Scholar
  7. 7.
    Perreau-Lenz S, Kalsbeek A, Garidou ML et al (2003) Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur J Neurosci 17:221–228PubMedCrossRefGoogle Scholar
  8. 8.
    Ganguly S, Coon SL, Klein DC (2002) Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res 309:127–137PubMedCrossRefGoogle Scholar
  9. 9.
    Roseboom PH, Coon SL, Baeler R et al (1996) Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase. Endocrinology 137:3033–3045PubMedCrossRefGoogle Scholar
  10. 10.
    von Gall C, Garabette ML, Kell CA et al (2002) Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci 5:234–238CrossRefGoogle Scholar
  11. 11.
    Kalsbeek A, Cutrera RA, van Heerikjuize JJ et al (1999) GABA release from the suprachiasmatic nucleus terminals is necessary for the light-induced inhibition of nocturnal melatonin release in the rat. Neuroscience 91:453–461PubMedCrossRefGoogle Scholar
  12. 12.
    Kalsbeek A, Garidou ML, Palm IF et al (2000) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12:3146–3154PubMedCrossRefGoogle Scholar
  13. 13.
    Lockley SW, Skene DJ, Arendt J et al (1997) Relationship between melatonin rhythms and visual loss in the blind. J Clin Endocrinol Metab 82:3763–3770PubMedCrossRefGoogle Scholar
  14. 14.
    Lewy AJ, Wehr TA, Goodwin FK et al (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269PubMedCrossRefGoogle Scholar
  15. 15.
    Deacon S, Arendt J (1994) Posture influences melatonin concentration in plasma and saliva in humans. Neurosci Lett 167:191–194PubMedCrossRefGoogle Scholar
  16. 16.
    Lewy AJ, Sack RL (1989) The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int 6:93–102PubMedCrossRefGoogle Scholar
  17. 17.
    Benloucif S, Burgess HJ, Klerman EB et al (2008) Measuring melatonin in humans. J Clin Sleep Med 15:66–69Google Scholar
  18. 18.
    Rajaratnam SMW, Arendt J (2001) Health in a 24-h society. Lancet 358:999–1005PubMedCrossRefGoogle Scholar
  19. 19.
    Gibbs M, Hampton S, Morgan L et al (2007) Predicting circadian response to abrupt phase-shift: 6-sulphatoxymelatonin rhythms in rotating shift workers offshore. J Biol Rhythms 22:368–370PubMedCrossRefGoogle Scholar
  20. 20.
    Shanahan TL, Czeisler CA (1991) Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. J Clin Endocrinol Metab 73:227–235PubMedCrossRefGoogle Scholar
  21. 21.
    Shanahan TL, Zeitzer JM, Czeisler CA (1997) Resetting the melatonin rhythm with light in humans. J Biol Rhythms 12:556–567PubMedCrossRefGoogle Scholar
  22. 22.
    Archer SN, Robillaird DL, Skene DJ et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415PubMedGoogle Scholar
  23. 23.
    Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661PubMedCrossRefGoogle Scholar
  24. 24.
    Masana MI, Dubocovich ML (2001) Melatonin receptor signalling: finding the path through the dark. Sci STKE 2001:E39CrossRefGoogle Scholar
  25. 25.
    Panzer A, Viljoen J (1997) The validity of melatonin as an oncostatic agent. J Pineal Res 22:184–202PubMedCrossRefGoogle Scholar
  26. 26.
    Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 48:6121–6126PubMedGoogle Scholar
  27. 27.
    Pierrefiche G, Topall G, Courboin G et al (1993) Antioxidant activity of melatonin in mice. Res Commun Chem Pathol Pharmacol 80:211–223PubMedGoogle Scholar
  28. 28.
    Tengattini S, Reiter RJ, Tan D-X et al (2008) Cardiovascular diseases: protective effects of melatonin. J Pineal Res 44:16–25PubMedGoogle Scholar
  29. 29.
    Peschke E (2008) Melatonin, endocrine pancreas and diabetes. J Pineal Res 44:26–40PubMedGoogle Scholar
  30. 30.
    Robeva R, Kirilov G, Tomova A et al (2008) Melatonin–insulin interactions in patients with metabolic syndrome. J Pineal Res 44:52–56PubMedGoogle Scholar
  31. 31.
    Wright KPJ, Hull JT, Hughes RJ et al (2006) Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cogn Neurosci 18:508–521PubMedCrossRefGoogle Scholar
  32. 32.
    Van Cauter E, Plonsky KS, Sheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–738PubMedCrossRefGoogle Scholar
  33. 33.
    Reilly T, Waterhouse J, Edwards B (2005) Jet lag and air travel: implications for performance. Clin Sports Med 24:367–380PubMedCrossRefGoogle Scholar
  34. 34.
    Morgan L, Hampton S, Gibbs M et al (2003) Circadian aspects of postprandial metabolism. Chronobiol Int 20:795–808PubMedCrossRefGoogle Scholar
  35. 35.
    Lockley SW, Dijk D-J, Kosti O et al (2008) Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind. J Sleep Res 17:207–216PubMedCrossRefGoogle Scholar
  36. 36.
    Arendt J, Skene DJ, Middleton B et al (1997) Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms 12:604–617PubMedCrossRefGoogle Scholar
  37. 37.
    Rajaratnam SM, Dijk D-J, Middleton B et al (2003) Melatonin phase-shifts human circadian rhythms with no evidence of changes in the duration of endogenous melatonin secretion or the 24-h production of reproductive hormones. J Clin Endocrinol Metab 88:4303–4309PubMedCrossRefGoogle Scholar
  38. 38.
    Fraser S, Cowen P, Franklin M et al (1983) A direct radioimmunoassay for melatonin. Clin Chem 29:396–399PubMedGoogle Scholar
  39. 39.
    Fraser S, Cowen P, Franklin M et al (1983) Direct radioimmunoassay and gas-chromatography-mass-spectrometry compared for determination of melatonin in plasma. Clin Chem 29:1703–1704PubMedGoogle Scholar
  40. 40.
    Vakkuri O, Leppaluoto J, Vuolteenaho O (1984) Development and validation of melatonin radioimmunoassay using radioiodinated melatonin as tracer. Acta Endocrinol (Copenh) 106:152–157Google Scholar
  41. 41.
    Vakkuri O (1985) Diurnal rhythm of melatonin in human saliva. Acta Physiol Scand 124:409–412PubMedCrossRefGoogle Scholar
  42. 42.
    English J, Middleton B, Arendt J et al (1993) Rapid direct measurement of saliva using an iodinated tracer and solid phase second antibody. Ann Clin Biochem 30:415–416PubMedGoogle Scholar
  43. 43.
    Vaughan GM (1993) New sensitive serum melatonin radioimmunoassay employing the Kennaway G280 antibody: Syrian hamster morning adrenergic response. J Pineal Res 15:88–103PubMedCrossRefGoogle Scholar
  44. 44.
    Arendt J, Bojkowski C, Franey C et al (1985) Immunoassay of 6-hydroxymelatonin sulphate in human plasma and urine: abolition of the urinary 24 h rhythm with atenolol. J Clin Endocrinol Metab 60:1166–1173PubMedCrossRefGoogle Scholar
  45. 45.
    Aldhous ME, Arendt J (1988) Radioimmunoassay for 6-sulphatoxymelatonin in urine using an iodinated tracer. Ann Clin Biochem 25:298–303PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Benita Middleton
    • 1
  1. 1.Chronobiology Group, Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations