Skip to main content

Design of Tiling Arrays and Their Application to Bacterial Transcriptome Analysis

  • Protocol
  • First Online:
  • 1326 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

Abstract

Whole-genome sequencing and annotation have clarified total gene number and structure in a variety of organisms. Microarrays have facilitated transcriptome analysis through the use of probes that target a large number of genes based on genomic information. However, microarrays are limited in that they can only examine known or predicted genes; non-annotated genes and noncoding regions cannot be accounted for.

Recent advances in technology have led to the design of tiling arrays, which contain a vastly increased number of spotted probes, and at higher density. Tiling arrays cover the entire genome of a prokaryotic species in an unbiased fashion by designing a large number of probes. Upon hybridization of total RNA, all the transcribed regions of the genome, irrespective of gene annotation, can be detected. As opposed to next-generation sequencing, tiling arrays are cost-effective, easy to analyze, and have been used for experiments as diverse as transcriptome analysis, ChIP-chip, and DNA sequence variation detection. In this chapter, the methods for bacterial tiling array slide design, RNA sample preparation, hybridization, and data analysis are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111–2127

    Article  PubMed  CAS  Google Scholar 

  2. Niehus E, Gressmann H, Ye F, Schlapbach R, Dehio M, Dehio C et al (2004) Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol 52:947–961

    Article  PubMed  CAS  Google Scholar 

  3. Zhou D, Han Y, Qiu J, Qin L, Guo Z, Wang X et al (2006) Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes Infect 8:2669–2678

    Article  PubMed  CAS  Google Scholar 

  4. Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG et al (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138

    PubMed  CAS  Google Scholar 

  5. Akama T, Tanigawa K, Kawashima A, Wu H, Ishii N, Suzuki K (2010) Analysis of Mycobacterium leprae gene expression using DNA microarray. Microb Pathog 49:181–185

    Article  PubMed  CAS  Google Scholar 

  6. Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S et al (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  7. Lin H, Shabbir A, Molnar M, Lee T (2007) Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene. Biochem Biophys Res Commun 355:111–116

    Article  PubMed  CAS  Google Scholar 

  8. Suzuki K, Nakata N, Bang PD, Ishii N, Makino M (2006) High-level expression of pseudogenes in Mycobacterium leprae. FEMS Microbiol Lett 259:208–214

    Article  PubMed  CAS  Google Scholar 

  9. Rukmana A, Morimoto T, Takahashi H, Giyanto, Ogasawara N (2009) Assessment of transcriptional responses of Bacillus subtilis cells to the antibiotic enduracidin, which interferes with cell wall synthesis, using a high-density tiling chip. Genes Genet Syst 84:253–267

    Article  PubMed  CAS  Google Scholar 

  10. Swiderek H, Claus H, Frosch M, Vogel U (2005) Evaluation of custom-made DNA microarrays for multilocus sequence typing of Neisseria meningitidis. Int J Med Microbiol 295:39–45

    Article  PubMed  CAS  Google Scholar 

  11. Perocchi F, Xu Z, Clauder-Munster S, Steinmetz LM (2007) Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res 35:e128

    Article  PubMed  Google Scholar 

  12. Akama T, Suzuki K, Tanigawa K, Kawashima A, Wu H, Nakata N et al (2009) Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 191:3321–3327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Akama, T., Nakamura, K., Tanoue, A., Suzuki, K. (2013). Design of Tiling Arrays and Their Application to Bacterial Transcriptome Analysis. In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics