In Vivo Quantification of Metastatic Tumor Cell Adhesion in the Pulmonary Microvasculature

  • F. Bartsch
  • M. L. Kang
  • S. T. Mees
  • J. Haier
  • P. Gassmann
Part of the Methods in Molecular Biology book series (MIMB, volume 1066)


In vivo and ex vivo fluorescence video microscopy used to be a well-established method in life science with a variety of applications, such as in inflammation or cancer research. In this book chapter, we describe a model of in vivo fluorescence microscopy of the rat’s lung with the exclusive advantage of qualitative and quantitative in vivo analysis of cell adhesion within the complex microenvironment of the ventilated and perfused lung. Observation can include real-time, time-lapse, or fast-motion analysis. In our laboratory, we have used the model for qualitative and quantitative real-time analyses of metastatic colon cancer cell adhesion within the rat’s pulmonary microcirculation. Using some modifications in another series, we have also applied the model to analyze thrombocyte and leucocyte adhesion within the pulmonary capillaries in experimental sepsis. For interventional studies, injected cells or animals may be pretreated with various reagents or drugs for further analysis of adhesion molecules involved in tumor cell–endothelial cell interactions.

Key words

In vivo fluorescence video microscopy Cancer metastases Tumor cell adhesion Microvasculature Endothelial cells Lung Rat 


  1. 1.
    Rose DM, Alon R, Ginsberg MH (2007) Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev 218:126–134PubMedCrossRefGoogle Scholar
  2. 2.
    Gassmann P, Haier J (2008) The tumor cell—host interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 25:171–181PubMedCrossRefGoogle Scholar
  3. 3.
    Shibuya K, Mthers CD, Boschi-Pinto C et al (2002) Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2:37PubMedCrossRefGoogle Scholar
  4. 4.
    Weiss L, Grundmann E, Torhorst J et al (1986) Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol 150:195–203PubMedCrossRefGoogle Scholar
  5. 5.
    Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  6. 6.
    Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572PubMedCrossRefGoogle Scholar
  7. 7.
    Mook OR, Van Marle J, Vreeling-Sindelarova H et al (2003) Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38: 295–304PubMedCrossRefGoogle Scholar
  8. 8.
    Enns A, Korb T, Schluter K et al (2005) Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer 41:1065–1072PubMedCrossRefGoogle Scholar
  9. 9.
    Brodt P, Fallavollita L, Bresaller RS et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71:612–619PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature 6:100–102CrossRefGoogle Scholar
  11. 11.
    Zipin A, Israeli-Amit M, Meshel T et al (2004) Tumor-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res 64:6571–6578, Erratum in: Cancer Res 2004, 64:8130PubMedCrossRefGoogle Scholar
  12. 12.
    Glinskii OV, Huxley VH, Glinsky GV et al (2005) Mechanical Entrapment is insufficient and intracellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527PubMedCrossRefGoogle Scholar
  13. 13.
    Haier J, Nasralla M, Nicolson GL (2000) Cell surface molecules and their prognostic values in assessing colorectal carcinomas. Ann Surg 231:11–24PubMedCrossRefGoogle Scholar
  14. 14.
    Haier J, Nicolson GL (2000) Tumor cell adhesion of human colon carcinoma cells with different metastatic properties to extracellular matrix under dynamic conditions of laminar flow. J Cancer Res Clin Oncol 126:699–706PubMedCrossRefGoogle Scholar
  15. 15.
    Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedCrossRefGoogle Scholar
  16. 16.
    Schluter K, Gassmann P, Enns A et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073PubMedCrossRefGoogle Scholar
  17. 17.
    Voura EB, Ramjeesingh RA, Montgomery AMP et al (2001) Involvement of integrin αvβ3 and cell adhesion molecule L1 in tranendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710PubMedCrossRefGoogle Scholar
  18. 18.
    Küpper S, Mees ST, Gassmann P et al (2007) Hydroxyethyl starch normalizes platelet and leukocyte adhesion within pulmonary microcirculation during LPS-induced endotoxemia. Shock 28:300–308PubMedCrossRefGoogle Scholar
  19. 19.
    Price JE, Daniels LM, Campbell DE et al (1989) Organ distribution of experimental metastases of a human colorectal carcinoma injected in nude mice. Clin Exp Metastasis 7:55–68PubMedCrossRefGoogle Scholar
  20. 20.
    Kikkawa H, Kaihou M, Horaguchi N et al (2002) Role of integrin alpha(v)beta3 in the early phase of liver metastasis: PET and IVM analyses. Clin Exp Metastasis 19:717–725PubMedCrossRefGoogle Scholar
  21. 21.
    Gassmann P, Kang ML, Mees ST et al (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 10:177PubMedCrossRefGoogle Scholar
  22. 22.
    Haier J, Korb T, Hotz B et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7:507–514, discussion 514–5PubMedCrossRefGoogle Scholar
  23. 23.
    Gassmann P, Hemping-Bovenkerk A, Mees ST et al (2009) Metastatic tumor cell arrest in the liver-lumen occlusion and specific adhesion are not exclusive. Int J Colorectal Dis 24:851–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • F. Bartsch
    • 1
  • M. L. Kang
    • 2
  • S. T. Mees
    • 3
  • J. Haier
    • 2
  • P. Gassmann
    • 1
  1. 1.General, Visceral and Transplantation SurgeryMedical Center of the Johannes Gutenberg-University MainzMainzGermany
  2. 2.Molecular Biology Lab, Department of General SurgeryUniversity Hospital of MuensterMuensterGermany
  3. 3.Department of General and Visceral SurgeryUniversity Hospital of MuensterMuensterGermany

Personalised recommendations