Generation and Analysis of Biosensors to Measure Mechanical Forces Within Cells

  • Katharina Austen
  • Carleen Kluger
  • Andrea Freikamp
  • Anna Chrostek-Grashoff
  • Carsten Grashoff
Part of the Methods in Molecular Biology book series (MIMB, volume 1066)


The inability to measure mechanical forces within cells has been limiting our understanding of how mechanical information is processed on the molecular level. In this chapter, we describe a method that allows the analysis of force propagation across distinct proteins within living cells using Förster resonance energy transfer (FRET)-based biosensors.

Key words

Mechanobiology Mechanotransduction Force measurement Biosensor Tension sensor Förster resonance energy transfer (FRET) Fluorescence-lifetime imaging microscopy (FLIM) 


  1. 1.
    Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323PubMedCrossRefGoogle Scholar
  2. 2.
    Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725PubMedCrossRefGoogle Scholar
  3. 3.
    Wang JH, Li B (2009) Application of cell traction force microscopy for cell biology research. Methods Mol Biol 586:301–313PubMedCrossRefGoogle Scholar
  4. 4.
    Rowat AC (2009) Physical properties of the nucleus studied by micropipette aspiration. Methods Mol Biol 464:3–12PubMedCrossRefGoogle Scholar
  5. 5.
    Mackay JL, Kumar S (2013) Measuring the elastic properties of living cells with atomic force microscopy indentation. Methods Mol Biol 931:313–329PubMedCrossRefGoogle Scholar
  6. 6.
    Kasza KE, Vader D, Koster S et al (2011) Magnetic twisting cytometry. Cold Spring Harb Protoc 2011:pdp prot5599Google Scholar
  7. 7.
    Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266PubMedCrossRefGoogle Scholar
  8. 8.
    Doyle AD, Yamada KM (2010) Cell biology: Sensing tension. Nature 466:192–193PubMedCrossRefGoogle Scholar
  9. 9.
    Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10:409–416PubMedCrossRefGoogle Scholar
  10. 10.
    Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395PubMedCrossRefGoogle Scholar
  11. 11.
    Morton PE, Parsons M (2011) Measuring FRET using time-resolved FLIM. Methods Mol Biol 769:403–413PubMedCrossRefGoogle Scholar
  12. 12.
    Becker W (2012) Fluorescence lifetime imaging – techniques and applications. J Microsc 247:119–136PubMedCrossRefGoogle Scholar
  13. 13.
    Nelson MD, Fitch DH (2011) Overlap extension PCR: an efficient method for transgene construction. Methods Mol Biol 772:459–470PubMedCrossRefGoogle Scholar
  14. 14.
    Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932PubMedCrossRefGoogle Scholar
  15. 15.
    Swift S, Lorens J, Achacoso P, et al (2001) Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. In: John E. Coligan et al. (eds.) Current protocols in immunology. Chapter 10, Unit 10 17CGoogle Scholar
  16. 16.
    Digman MA, Caiolfa VR, Zamai M et al (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Katharina Austen
    • 1
  • Carleen Kluger
    • 1
  • Andrea Freikamp
    • 1
  • Anna Chrostek-Grashoff
    • 1
  • Carsten Grashoff
    • 1
  1. 1.Group of Molecular MechanotransductionMax-Planck-Institute of BiochemistryMartinsriedGermany

Personalised recommendations