Proteomics Analysis of Contact-Initiated Eph Receptor–Ephrin Signaling

  • Claus Jorgensen
  • Alexei Poliakov
Part of the Methods in Molecular Biology book series (MIMB, volume 1066)


Large-scale biochemical analysis of cell-specific signaling can be interrogated in cocultures of Eph receptor- and ephrin-expressing cells by combining proteomics analysis with cell-specific metabolic labeling. In this chapter, we describe how to perform such large-scale analysis, including the generation of cells stably expressing the receptors and ligands of interest, optimization steps for Eph–ephrin coculture, and the proteomics analysis. As the experimental details may vary depending on the specific system that is being interrogated, the goal of the chapter is mainly to provide sufficient experimental context for experienced researchers to set up and conduct these experiments.

Key words

Proteomics Eph receptors Ephrins Cell–cell interactions Cell signaling 



The authors would like to acknowledge the contribution of Tony Pawson and David Wilkinson. Claus Jorgensen is a recipient of a CR-UK Career Establishment Award.


  1. 1.
    Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133: 38–52PubMedCrossRefGoogle Scholar
  2. 2.
    Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 1:re2PubMedCrossRefGoogle Scholar
  3. 3.
    Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signaling and beyond. Nat Rev Cancer 10:165–180PubMedCrossRefGoogle Scholar
  4. 4.
    Holland SJ, Gale NW, Mbamalu G et al (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725PubMedCrossRefGoogle Scholar
  5. 5.
    Bruckner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275: 1640–1643PubMedCrossRefGoogle Scholar
  6. 6.
    Henkemeyer M, Orioli D, Henderson JT et al (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46PubMedCrossRefGoogle Scholar
  7. 7.
    Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16:3877–3888PubMedCrossRefGoogle Scholar
  8. 8.
    Wybenga-Groot LE, Baskin B, Ong SH et al (2001) Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745–757PubMedCrossRefGoogle Scholar
  9. 9.
    Cowan CA, Henkemeyer M (2001) The SH2/SH3 adaptor Grb4 transduces Bephrin reverse signals. Nature 413:174–179PubMedCrossRefGoogle Scholar
  10. 10.
    Ong S-E, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  11. 11.
    Poliakov A, Cotrina ML, Pasini A et al (2008) Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. J Cell Biol 183:933–947PubMedCrossRefGoogle Scholar
  12. 12.
    Henkemeyer M, Marengere LE, McGlade J et al (1994) Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 9:1001–1014PubMedGoogle Scholar
  13. 13.
    Moriyoshi K, Richards LJ, Akazawa C et al (1996) Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16:255–260PubMedCrossRefGoogle Scholar
  14. 14.
    Jørgensen C, Sherman A, Chen GI et al (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326: 1502–1509PubMedCrossRefGoogle Scholar
  15. 15.
    Ong S-E, Mann MA (2007) Practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protocol 1: 2650–2660CrossRefGoogle Scholar
  16. 16.
    Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protocol 3:505–516CrossRefGoogle Scholar
  17. 17.
    Blagoev B, Mann M (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250PubMedCrossRefGoogle Scholar
  18. 18.
    Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677–678PubMedCrossRefGoogle Scholar
  19. 19.
    Park SK, Liao L, Kim JY et al (2009) A computational approach to correct arginine-to-proline conversion in quantitative proteomics. Nat Methods 6:184–185PubMedCrossRefGoogle Scholar
  20. 20.
    Bendall SC, Hughes C, Stewert MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597PubMedCrossRefGoogle Scholar
  21. 21.
    Rush J, Moritz A, Lee KA et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang Y, Wolf-Yadlin A, Ross PL et al (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4: 1240–1250PubMedCrossRefGoogle Scholar
  23. 23.
    Thingholm TE, Jensen ON, Robinson PJ et al (2007) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671PubMedCrossRefGoogle Scholar
  24. 24.
    Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protocol 4:698–705CrossRefGoogle Scholar
  25. 25.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372PubMedCrossRefGoogle Scholar
  26. 26.
    Shevchenko A, Tomas H, Havlisbreve J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protocol 1:2856–2860CrossRefGoogle Scholar
  27. 27.
    Boisvert FM, Ahmad Y, Gierlinski M et al (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11:M111.011429Google Scholar

Copyright information

© Springer Science+Business Media, New York 2013

Authors and Affiliations

  • Claus Jorgensen
    • 1
  • Alexei Poliakov
    • 2
  1. 1.Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
  2. 2.Division of Developmental NeurobiologyMRC National Institute of Medical ResearchLondonUK

Personalised recommendations