Skip to main content

Early Stage Hit Triage for Plant Chemical Genetic Screens and Target Site Identification

  • Protocol
  • First Online:
Plant Chemical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1056))

  • 2372 Accesses

Abstract

The increasing use of plant biological screens of large compound libraries to discover informative chemical probes for plant chemical genetics requires efficient methods for hit selection and advancement. Downstream target identification and validation studies with selected chemistries can also be resource-intensive and have a significant failure rate. Several steps and considerations for early stage hit triage are outlined to increase the probability of success that downstream studies with the chemical probe will be robust and productive, especially for target site discovery. Conversely, problematic compounds can be shelved or avoided entirely, saving time and resources. These steps include assessment of compound availability, purity, stability and solubility; determination of the biological dose–response; early and iterative evaluation of analogs; avoidance of promiscuous “frequent-hitters”; consideration of physicochemical parameters affecting compound bioavailability and mobility, use of “low-barrier” biological testing systems; and assessing the potential for compound metabolism or bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaschani F, van der Hoorn R (2007) Small molecule approaches in plants. Curr Opin Chem Biol 11:88–98

    Article  PubMed  CAS  Google Scholar 

  2. Dayan FE, Duke SO, Grossmann K (2010) Herbicides as probes in plant biology. Weed Sci 58:340–350

    Article  CAS  Google Scholar 

  3. Tóth R, van der Hoorn RAL (2010) Emerging principles in plant chemical genetics. Trends Plant Sci 15:81–88

    Article  PubMed  Google Scholar 

  4. Robert S, Raikhel NV, Hicks GR (2009) Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7:e0109

    Article  PubMed  Google Scholar 

  5. Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161

    Article  PubMed  CAS  Google Scholar 

  6. Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11:593–597

    Article  PubMed  CAS  Google Scholar 

  7. Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142:542–552

    Article  PubMed  CAS  Google Scholar 

  8. Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP (2007) Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol 144:1292–1304

    Article  PubMed  CAS  Google Scholar 

  9. Walsh TA (2007) The emerging field of chemical genetics: potential applications for pesticide discovery. Pest Manag Sci 63:1165–1171

    Article  PubMed  CAS  Google Scholar 

  10. Kerns EH, Di L (2003) Pharmaceutical profiling in drug discovery. Drug Discov Today 8:316–323

    Article  PubMed  CAS  Google Scholar 

  11. Eddershaw PJ, Beresford AP, Bayliss MK (2000) ADME/PK as part of a rational approach to drug discovery. Drug Discov Today 5:409–414

    Article  PubMed  CAS  Google Scholar 

  12. Tietjen K, Drewes M, Stenzel K (2005) High throughput screening in agrochemical research. Comb Chem High Throughput Screen 8:589–594

    Article  PubMed  CAS  Google Scholar 

  13. Kolukisaoglu U, Thurow K (2010) Future and frontiers of automated screening in plant sciences. Plant Sci 178:476–484

    Article  CAS  Google Scholar 

  14. Di L, Kerns EH (2009) Stability challenges in drug discovery. Chem Biodivers 6:1875–1886

    Article  PubMed  CAS  Google Scholar 

  15. Di L, Kerns EH (2006) Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov Today 11:446–451

    Article  PubMed  CAS  Google Scholar 

  16. Baell JB (2011) Redox-active nuisance screening compounds and their classification. Drug Discov Today 16:840–841

    Article  CAS  Google Scholar 

  17. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148

    Article  PubMed  CAS  Google Scholar 

  18. De Rybel B, Audenaert D, Beeckman T, Kepinski S (2009) The past, present, and future of chemical biology in Auxin research. ACS Chem Biol 4:987–998

    Article  PubMed  Google Scholar 

  19. Hsu FC, Kleier DA (1996) Phloem mobility of xenobiotics. 8. A short review. J Exp Bot 47:1265–1271

    Article  PubMed  CAS  Google Scholar 

  20. Lichtner F (2000) Phloem mobility of crop protection products. Aust J Plant Physiol 27:609–614

    CAS  Google Scholar 

  21. Liu ZQ (2006) Leaf epidermal cells: a trap for lipophilic xenobiotics. J Integr Plant Biol 48:1063–1068

    Article  CAS  Google Scholar 

  22. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

    Article  CAS  Google Scholar 

  23. Gershater M, Edwards R (2007) Regulating biological activity in plants with carboxylesterases. Plant Sci 173:579–588

    Article  CAS  Google Scholar 

  24. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  25. Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    Article  PubMed  CAS  Google Scholar 

  26. Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. In: Merchant S, Briggs WR, Ort D (eds) Annual review of plant biology. Annual Reviews, Palo Alto, CA, USA. vol 61, pp 291–315

    Google Scholar 

  27. Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    Article  PubMed  CAS  Google Scholar 

  28. Conte SS, Lloyd AM (2011) Exploring multiple drug and herbicide resistance in plants—spotlight on transporter proteins. Plant Sci 180:196–203

    Article  PubMed  CAS  Google Scholar 

  29. Buss DS, Callaghan A (2008) Interaction of pesticides with p-glycoprotein and other ABC proteins: a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pest Biochem Physiol 90:141–153

    Article  CAS  Google Scholar 

  30. Siehl DL, Subramanian MV, Walters EW, Blanding JH, Niderman T, Weinmann C (1997) Evaluating anthranilate synthase as a herbicide target. Weed Sci 45:628–633

    CAS  Google Scholar 

  31. Thies F, Backhaus T, Bossmann B, Grimme LH (1996) Xenobiotic biotransformation in unicellular green algae—involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol 112:361–370

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi M, Toriyama K, Kondo M, Nishimura M (1998) 2,4-dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 10:183–195

    PubMed  CAS  Google Scholar 

  33. Savaldi-Goldstein S, Baiga TJ, Pojer F, Dabi T, Butterfield C, Parry G, Santner A, Dharmasiri N, Tao Y, Estelle M, Noel JP, Chory J (2008) New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. Proc Natl Acad Sci U S A 105:15190–15195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Walsh, T.A. (2014). Early Stage Hit Triage for Plant Chemical Genetic Screens and Target Site Identification. In: Hicks, G., Robert, S. (eds) Plant Chemical Genomics. Methods in Molecular Biology, vol 1056. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-592-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-592-7_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-591-0

  • Online ISBN: 978-1-62703-592-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics