Methods and Applications of Serological Proteome Analysis

  • Kelly M. Fulton
  • Shannon S. Martin
  • Lawrence Wolfraim
  • Susan M. Twine
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)


The study of the humoral response to infectious diseases and chronic diseases, such as cancer, is important for many reasons, including understanding the host response to disease, identification of protective antigens, vaccine development, and discovery of biomarkers for early diagnosis. During the past decade, proteomic approaches, such as serological proteome analysis (SERPA), have been used to identify the repertoire of immunoreactive proteins in various diseases. In this chapter, we provide an outline of the SERPA approach, using the analysis of sera from mice vaccinated with a live attenuated tularemia vaccine as an example.

Key words

SERPA Serological proteome analysis Western blotting Immunoproteomics Comparative immunoproteomics Francisella Tularemia Live vaccine strain 



This work was supported by Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Contract No. HHSN266200500041C and in part by the National Research Council, Canada. The authors thank Freyja Lynn, Drs Vicki Pierson, Kristin Debord, Patrick Sanz (National Institutes of Allergy and Infectious Diseases), Dr J. Wayne Conlan, Luc Tessier and Marianne Savicky (National Research Council, Canada), and Gretchen Stup (DynPort Vaccine Company) for their contributions throughout this work. The authors also thank Patricia Massel for method testing and critical reading of the manuscript.


  1. 1.
    Engelfried JJ, Spear F (1966) Modified agglutination test for Pasteurella tularensis. Appl Microbiol 14:267–270PubMedGoogle Scholar
  2. 2.
    Carlsson HE, Lindberg AA, Lindberg G, Hederstedt B, Karlsson KA, Agell BO (1979) Enzyme-linked immunosorbent assay for immunological diagnosis of human tularemia. J Clin Microbiol 10:615–621PubMedGoogle Scholar
  3. 3.
    Bevanger L, Maeland JA, Naess AI (1988) Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of tularemia. J Clin Microbiol 26:433–437PubMedGoogle Scholar
  4. 4.
    Klade CS (2002) Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4:216–223PubMedGoogle Scholar
  5. 5.
    Vytvytska O, Nagy E, Bluggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590PubMedCrossRefGoogle Scholar
  6. 6.
    Parida SK, Kaufmann SH (2010) The quest for biomarkers in tuberculosis. Drug Discov Today 15:148–157PubMedCrossRefGoogle Scholar
  7. 7.
    Kilmury SL, Twine SM (2010) The Francisella tularensis proteome and its recognition by antibodies. Front Microbiol 1:143PubMedGoogle Scholar
  8. 8.
    Eliasson H, Broman T, Forsman M, Back E (2006) Tularemia: current epidemiology and disease management. Infect Dis Clin North Am 20:289–311, ixPubMedCrossRefGoogle Scholar
  9. 9.
    Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285:2763–2773PubMedCrossRefGoogle Scholar
  10. 10.
    Fulton KM, Zhao X, Petit MD, Kilmury SL, Wolfraim LA, House RV, Sjostedt A, Twine SM (2011) Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination. Int J Med Microbiol 301:591–601PubMedCrossRefGoogle Scholar
  11. 11.
    Twine SM, Petit MD, Fulton KM, House RV, Conlan JW (2010) Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 5:e10000PubMedCrossRefGoogle Scholar
  12. 12.
    Havlasova J, Hernychova L, Brychta M, Hubalek M, Lenco J, Larsson P, Lundqvist M, Forsman M, Krocova Z, Stulik J, Macela A (2005) Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 5:2090–2103PubMedCrossRefGoogle Scholar
  13. 13.
    Havlasova J, Hernychova L, Halada P, Pellantova V, Krejsek J, Stulik J, Macela A, Jungblut PR, Larsson P, Forsman M (2002) Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2:857–867PubMedCrossRefGoogle Scholar
  14. 14.
    Janovska S, Pavkova I, Hubalek M, Lenco J, Macela A, Stulik J (2007) Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol Lett 108:151–159PubMedCrossRefGoogle Scholar
  15. 15.
    Janovska S, Pavkova I, Reichelova M, Hubaleka M, Stulik J, Macela A (2007) Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol (Praha) 52:194–198CrossRefGoogle Scholar
  16. 16.
    Huntley JF, Conley PG, Rasko DA, Hagman KE, Apicella MA, Norgard MV (2008) Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis. Infect Immun 76:3664–3671PubMedCrossRefGoogle Scholar
  17. 17.
    Huntley JF, Robertson GT, Norgard MV (2010) Method for the isolation of Francisella tularensis outer membranes. J Vis ExpGoogle Scholar
  18. 18.
    Kovarova H, Stulik J, Macela A, Lefkovits I, Skrabkova Z (1992) Using two-dimensional gel electrophoresis to study immune response against intracellular bacterial infection. Electrophoresis 13:741–742PubMedCrossRefGoogle Scholar
  19. 19.
    Macela A, Stulik J, Hernychova L, Kroca M, Krocova Z, Kovarova H (1996) The immune response against Francisella tularensis live vaccine strain in Lps(n) and Lps(d) mice. FEMS Immunol Med Microbiol 13:235–238PubMedCrossRefGoogle Scholar
  20. 20.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao L, Liu C, Sun Y, Ban L (2012) A rapid and simplified method for protein silver staining in polyacrylamide gels. Electrophoresis 33:2143–2144PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Kelly M. Fulton
    • 1
  • Shannon S. Martin
    • 2
  • Lawrence Wolfraim
    • 2
  • Susan M. Twine
    • 1
  1. 1.Human Health TherapeuticsNational Research Council CanadaOttawaCanada
  2. 2.DynPort Vaccine Company LLC CSCFrederickUSA

Personalised recommendations