Advertisement

Identification of Protein Biomarkers in Human Serum Using iTRAQ and Shotgun Mass Spectrometry

  • Theodoros A. Koutroukides
  • Julian A. J. Jaros
  • Bob Amess
  • Daniel Martins-de-Souza
  • Paul C. Guest
  • Hassan Rahmoune
  • Yishai Levin
  • Mike Deery
  • Philip D. Charles
  • Svenja Hester
  • Arnoud Groen
  • Andy Christoforou
  • Julie Howard
  • Nick Bond
  • Sabine Bahn
  • Kathryn S. Lilley
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)

Abstract

Blood serum is one of the easiest accessible sources of biomarkers and its proteome presents a significant parcel of immune system proteins. These proteins can provide not only biological explanation but also diagnostic and drug response answers independently of the type of disease or condition in question. Shotgun mass spectrometry has profoundly contributed to proteome analysis and is presently considered as an indispensible tool in the field of biomarker discovery. In addition, the multiplexing potential of isotopic labeling techniques such as iTRAQ can increase statistical relevance and accuracy of proteomic data through the simultaneous analysis of different biological samples. Here, we describe a complete protocol using iTRAQ in a shotgun proteomics workflow along with data analysis steps, customized for the challenges associated with the serum proteome.

Key words

iTRAQ Mass spectrometry Serum Depletion Strong cation exchange 

References

  1. 1.
    Liotta LA, Ferrari M, Petricoin E (2003) Clinical proteomics: written in blood. Nature 425:905PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867PubMedCrossRefGoogle Scholar
  3. 3.
    Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S (2011) Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 11:2139–2161PubMedCrossRefGoogle Scholar
  4. 4.
    Blonder J, Issaq HJ, Veenstra TD (2011) Proteomic biomarker discovery: it’s more than just mass spectrometry. Electrophoresis 32:1541–1548PubMedGoogle Scholar
  5. 5.
    Zhang Q, Faca V, Hanash S (2011) Mining the plasma proteome for disease applications across seven logs of protein abundance. J Proteome Res 10:46–50PubMedCrossRefGoogle Scholar
  6. 6.
    Liumbruno G, D’Alessandro A, Grazzini G, Zolla L (2010) Blood-related proteomics. J Proteomics 73:483–507PubMedCrossRefGoogle Scholar
  7. 7.
    Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS (2010) High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis 31:471–482PubMedCrossRefGoogle Scholar
  8. 8.
    Koutroukides TA, Guest PC, Leweke FM, Bailey DMD, Rahmoune H, Bahn S, Martins-de-Souza D (2011) Characterization of the human serum depletome by label-free shotgun proteomics. J Sep Sci 34:1621–1626PubMedCrossRefGoogle Scholar
  9. 9.
    Mayilyan KR, Weinberger DR, Sim RB (2008) The complement system in schizophrenia. Drug News Perspect 21:200–210PubMedCrossRefGoogle Scholar
  10. 10.
    Robotti A, Natale M, Albo AG, Lis K, Perga S, Marnetto F, Gilli F, Bertolotto A (2010) Acute-phase proteins investigation based on lectins affinity capture prior to 2-DE separation: application to serum from multiple sclerosis patients. Electrophoresis 31:2882–2893PubMedCrossRefGoogle Scholar
  11. 11.
    Ren F, Chen Y, Wang Y, Yan Y, Zhao J, Ding M, Zhang J, Jiang Y, Zhai Y, Duan Z (2010) Comparative serum proteomic analysis of patients with acute-on-chronic liver failure: alpha-1-acid glycoprotein maybe a candidate marker for prognosis of hepatitis B virus infection. J Viral Hepat 17:816–824PubMedCrossRefGoogle Scholar
  12. 12.
    Pitarch A, Nombela C, Gil C (2011) Prediction of the clinical outcome in invasive candidiasis patients based on molecular fingerprints of five anti-Candida antibodies in serum. Mol Cell Proteomics 10:M110PubMedGoogle Scholar
  13. 13.
    Solassol J, Du-Thanh A, Maudelonde T, Guillot B (2011) Serum proteomic profiling reveals potential biomarkers for cutaneous malignant melanoma. Int J Biol Markers 26:82–8710PubMedCrossRefGoogle Scholar
  14. 14.
    Muller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148PubMedCrossRefGoogle Scholar
  15. 15.
    Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM, Rothermundt M, Bogerts B, Koethe D, Kranaster L, Ohrmann P, Suslow T, McAllister G, Spain M, Barnes A, van Beveren NJM, Baron-Cohen S, Steiner J, Torrey FE, Yolken RH, Bahn S (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17:494–502PubMedCrossRefGoogle Scholar
  16. 16.
    Casoli T, Di Stefano G, Balietti M, Solazzi M, Giorgetti B, Fattoretti P (2010) Peripheral inflammatory biomarkers of Alzheimer’s disease: the role of platelets. Biogerontology 11:627–633PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang B, Liao R (2010) The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res 3:410–416PubMedCrossRefGoogle Scholar
  18. 18.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207PubMedCrossRefGoogle Scholar
  19. 19.
    Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Harris LW, Bahn S (2011) Proteomic technologies for biomarker studies in psychiatry: advances and needs. Int Rev Neurobiol 101:65–94PubMedCrossRefGoogle Scholar
  20. 20.
    Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553PubMedCrossRefGoogle Scholar
  21. 21.
    Olsen JV, Andersen JR, Nielsen PA, Nielsen ML, Figeys D, Mann M, Wisniewski JR (2004) HysTag – a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol Cell Proteomics 3:82–92PubMedGoogle Scholar
  22. 22.
    Whetstone PA, Butlin NG, Corneillie TM, Meares CF (2004) Element-coded affinity tags for peptides and proteins. Bioconjug Chem 15:3–6PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang L, Guo YL, Liu HQ (2004) A novel class of chemically modified iodo-containing resins: design, synthesis and application to mass spectrometry-based proteome analysis. J Mass Spectrom 39:447–457PubMedCrossRefGoogle Scholar
  24. 24.
    Chen P, Nie S, Mi W, Wang XC, Liang SP (2004) De novo sequencing of tryptic peptides sulfonated by 4-sulfophenyl isothiocyanate for unambiguous protein identification using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 18:191–198PubMedCrossRefGoogle Scholar
  25. 25.
    Hellman U, Bhikhabhai R (2002) Easy amino acid sequencing of sulfonated peptides using post-source decay on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer equipped with a variable voltage reflector. Rapid Commun Mass Spectrom 16:1851–1859PubMedCrossRefGoogle Scholar
  26. 26.
    Keough T, Youngquist RS, Lacey MP (2003) Sulfonic acid derivatives for peptide sequencing by MALDI MS. Anal Chem 75:156A–165APubMedCrossRefGoogle Scholar
  27. 27.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999PubMedCrossRefGoogle Scholar
  28. 28.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15PubMedCrossRefGoogle Scholar
  30. 30.
    Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931PubMedCrossRefGoogle Scholar
  31. 31.
    Levin Y, Bahn S (2010) Quantification of proteins by label-free LC-MS/MS. Methods Mol Biol 658:217–231PubMedCrossRefGoogle Scholar
  32. 32.
    Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502PubMedCrossRefGoogle Scholar
  33. 33.
    Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719PubMedCrossRefGoogle Scholar
  34. 34.
    Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JP (2002) A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom 13:792–803PubMedCrossRefGoogle Scholar
  35. 35.
    Wang J, Leung D (2007) Analyses of macrolide antibiotic residues in eggs, raw milk, and honey using both ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:3213–3222PubMedCrossRefGoogle Scholar
  36. 36.
    Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S (2010) Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 15:1088–1100PubMedCrossRefGoogle Scholar
  37. 37.
    Herberth M, Koethe D, Levin Y, Schwarz E, Krzyszton ND, Schoeffmann S, Ruh H, Rahmoune H, Kranaster L, Schoenborn T, Leweke MF, Guest PC, Bahn S (2011) Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics 11:94–105PubMedCrossRefGoogle Scholar
  38. 38.
    Shadforth IP, Dunkley TP, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145PubMedCrossRefGoogle Scholar
  39. 39.
    Colaert N, Barsnes H, Vaudel M, Helsens K, Timmerman E, Sickmann A, Gevaert K, Martens L (2011) Thermo-msf-parser: an open source Java library to parse and visualize thermo proteome discoverer msf files. J Proteome Res 10:3840–3843PubMedCrossRefGoogle Scholar
  40. 40.
    Wang H, Alvarez S, Hicks LM (2012) Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 11:487–501PubMedCrossRefGoogle Scholar
  41. 41.
    Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, Falkai P, Schmitt A, Turck CW (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44:1176–1189PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Theodoros A. Koutroukides
    • 1
  • Julian A. J. Jaros
    • 1
  • Bob Amess
    • 1
  • Daniel Martins-de-Souza
    • 2
  • Paul C. Guest
    • 1
  • Hassan Rahmoune
    • 1
  • Yishai Levin
    • 3
  • Mike Deery
    • 4
  • Philip D. Charles
    • 4
  • Svenja Hester
    • 4
  • Arnoud Groen
    • 4
  • Andy Christoforou
    • 4
  • Julie Howard
    • 4
  • Nick Bond
    • 4
  • Sabine Bahn
    • 1
  • Kathryn S. Lilley
    • 4
  1. 1.Department of Chemical Engineering and Biotechnology, Cambridge Centre for Neuropsychiatric ResearchUniversity of CambridgeCambridgeUK
  2. 2.Proteomics and Biomarkers, Max Planck Institute of PsychiatryMunichGermany
  3. 3.Proteomics and Mass Spectrometry UnitWeizmann Institute of ScienceRehovotIsrael
  4. 4.Department of Biochemistry, Cambridge Centre for ProteomicsUniversity of CambridgeCambridgeUK

Personalised recommendations