Advertisement

Cell-Based Arrays for the Identification of Interacting Polypeptide Domains or Epitopes

  • Richard H. Maier
  • Christina J. Maier
  • Kamil Önder
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)

Abstract

The specific regions on proteins which are responsible for protein–protein interaction are called interacting domains, or epitopes in case of antigen–antibody binding. These domains are one feature to characterize proteins and are important in clinical diagnostics and research. For the mapping of such domains the use of protein/peptide arrays has become popular. Regardless of which kind of array, the major requirements are a high number of candidates arranged in the array, high quality, ease of use, and cost-effectiveness. Here, the authors describe a general protocol for mapping the interacting domains of proteins demonstrated by a high affinity protein interaction, the interaction of an antibody to an antigen. The chapter describes a stepwise protocol from library production to the verification of the domain by the use of an automated cell-based polypeptide array, which comprises the named requirements of a good array.

Key words

Protein chip Peptide array Peptide library Epitope mapping Domain mapping 

References

  1. 1.
    Shoemaker BA, Panchenko AR (2007) Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3:e42PubMedCrossRefGoogle Scholar
  2. 2.
    Maier RH, Maier CJ, Rid R, Hintner H, Bauer JW, Onder K (2010) Epitope mapping of antibodies using a cell array-based polypeptide library. J Biomol Screen 15:418–426PubMedCrossRefGoogle Scholar
  3. 3.
    Spisak S, Tulassay Z, Molnar B, Guttman A (2007) Protein microchips in biomedicine and biomarker discovery. Electrophoresis 28:4261–4273PubMedCrossRefGoogle Scholar
  4. 4.
    Liu R, Barrick JE, Szostak JW, Roberts RW (2000) Optimized synthesis of RNA–protein fusions for in vitro protein selection. Methods Enzymol 318:268–293PubMedCrossRefGoogle Scholar
  5. 5.
    Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812PubMedCrossRefGoogle Scholar
  6. 6.
    Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90PubMedCrossRefGoogle Scholar
  7. 7.
    Tao SC, Zhu H (2006) Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol 24:1253–1254PubMedCrossRefGoogle Scholar
  8. 8.
    Beutling U, Stading K, Stradal T, Frank R (2008) Large-scale analysis of protein–protein interactions using cellulose-bound peptide arrays. Adv Biochem Eng Biotechnol 110:115–152PubMedGoogle Scholar
  9. 9.
    Hu YH, Warnatz HJ, Vanhecke D, Wagner F, Fiebitz A, Thamm S, Kahlem P, Lehrach H, Yaspo ML, Janitz M (2006) Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins. BMC Genomics 7:155PubMedCrossRefGoogle Scholar
  10. 10.
    Mannherz O, Mertens D, Hahn M, Lichter P (2006) Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics 87:665–672PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson WH, Steinman L, Utz PJ (2003) Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics 3:2077–2084PubMedCrossRefGoogle Scholar
  12. 12.
    Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795PubMedCrossRefGoogle Scholar
  13. 13.
    Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592PubMedCrossRefGoogle Scholar
  14. 14.
    Maier R, Brandner C, Hintner H, Bauer J, Onder K (2008) Construction of a reading frame-independent yeast two-hybrid vector system for site-specific recombinational cloning and protein interaction screening. Biotechniques 45:235–244PubMedCrossRefGoogle Scholar
  15. 15.
    Bernard P, Kezdy KE, Van Melderen L, Steyaert J, Wyns L, Pato ML, Higgins PN, Couturier M (1993) The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol 234:534–541PubMedCrossRefGoogle Scholar
  16. 16.
    Maier RH, Maier CJ, Onder K (2011) Construction of improved yeast two-hybrid libraries. Methods Mol Biol 729:71–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Richard H. Maier
    • 1
  • Christina J. Maier
    • 1
  • Kamil Önder
    • 1
  1. 1.Division of Molecular Dermatology, Department of DermatologyParacelsus Private Medical UniversitySalzburgAustria

Personalised recommendations