Advertisement

Enrichment and Characterization of Glycopeptide Epitopes from Complex Mixtures

  • Luc Tessier
  • Kelly M. Fulton
  • Susan M. Twine
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)

Abstract

Antigen posttranslational modifications, including glycosylation, are recognized by the innate and adaptive arms of the immune system. Analytical approaches, including mass spectrometry and allied techniques, have allowed advances in the enrichment and identification of glyco-antigens, particularly T-cell epitopes. Similarly, major advances have been made in the identification, isolation, and detailed characterization of prokaryotic and eukaryotic glycoproteins and glycopeptides. In particular, peptide centric approaches are now capable of enriching low level glycopeptides from highly complex peptide mixtures. Similarly, advanced mass spectrometry methods allow identification of glycopeptides, characterization of glycans, and mapping of modification sites. Herein, we describe methods developed in our laboratory for the broad study of glycopeptides and illustrate how these approaches can be exploited to further our understanding of the identity and nature of glycopeptide epitopes in various diseases or auto immune disorders.

Key words

Glycosylation Glycoprotein Glycopeptide Glycopeptide epitope Mass spectrometry Peptide identification Electron transfer dissociation Soft collision induced dissociation Posttranslational modification Modification site 

References

  1. 1.
    Himmler A, Hauptmann R, Adolf GR, Swetly P (1987) Structure and expression in Escherichia coli of canine interferon-alpha genes. J Interferon Res 7:173–183PubMedCrossRefGoogle Scholar
  2. 2.
    Krueger KE, Srivastava S (2006) Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Mol Cell Proteomics 5:1799–1810PubMedCrossRefGoogle Scholar
  3. 3.
    Atassi MZ, Casali P (2008) Molecular mechanisms of autoimmunity. Autoimmunity 41:123–132PubMedCrossRefGoogle Scholar
  4. 4.
    Hetzer C, Dormeyer W, Schnolzer M, Ott M (2005) Decoding Tat: the biology of HIV Tat posttranslational modifications. Microbes Infect 7:1364–1369PubMedCrossRefGoogle Scholar
  5. 5.
    Anderton SM (2004) Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 16:753–758PubMedCrossRefGoogle Scholar
  6. 6.
    Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18:92–97PubMedCrossRefGoogle Scholar
  7. 7.
    Petersen J, Purcell AW, Rossjohn J (2009) Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J Mol Med (Berl) 87:1045–1051PubMedCrossRefGoogle Scholar
  8. 8.
    Purcell AW, van Driel IR, Gleeson PA (2008) Impact of glycans on T-cell tolerance to glycosylated self-antigens. Immunol Cell Biol 86:574–579PubMedCrossRefGoogle Scholar
  9. 9.
    Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–308PubMedCrossRefGoogle Scholar
  10. 10.
    Chapman C, Murray A, Chakrabarti J, Thorpe A, Woolston C, Sahin U, Barnes A, Robertson J (2007) Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann Oncol 18:868–873PubMedCrossRefGoogle Scholar
  11. 11.
    Chapman CJ, Murray A, McElveen JE, Sahin U, Luxemburger U, Tureci O, Wiewrodt R, Barnes AC, Robertson JF (2008) Autoantibodies in lung cancer: possibilities for early detection and subsequent cure. Thorax 63:228–233PubMedCrossRefGoogle Scholar
  12. 12.
    Desmetz C, Bascoul-Mollevi C, Rochaix P, Lamy PJ, Kramar A, Rouanet P, Maudelonde T, Mange A, Solassol J (2009) Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res 15:4733–4741PubMedCrossRefGoogle Scholar
  13. 13.
    Tan HT, Low J, Lim SG, Chung MC (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276:6880–6904PubMedCrossRefGoogle Scholar
  14. 14.
    Lavrsen K, Madsen CB, Rasch MG, Woetmann A, Odum N, Mandel U, Clausen H, Pedersen AE, Wandall HH (2013) Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 30(3):227–236Google Scholar
  15. 15.
    Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Taylor-Papadimitriou J, Burchell J, Clausen H (2010) Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 70:1306–1313PubMedCrossRefGoogle Scholar
  16. 16.
    Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH (2011) Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 128:1860–1871PubMedCrossRefGoogle Scholar
  17. 17.
    Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, Majam G, Thibault P, Logan S (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60:299–311PubMedCrossRefGoogle Scholar
  18. 18.
    Logan SM (2006) Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:1249–1262PubMedCrossRefGoogle Scholar
  19. 19.
    Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276PubMedCrossRefGoogle Scholar
  20. 20.
    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 167:1882–1885PubMedGoogle Scholar
  21. 21.
    Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K, Appella E, Grey HM, Sette A (1992) Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256:1817–1820PubMedCrossRefGoogle Scholar
  22. 22.
    Brown SL, Stockdale VJ, Pettolino F, Pocock KF, de Barros Lopes M, Williams PJ, Bacic A, Fincher GB, Hoj PB, Waters EJ (2007) Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes YOL155c and YDR055w. Appl Microbiol Biotechnol 73:1363–1376PubMedCrossRefGoogle Scholar
  23. 23.
    Addona T, Clauser K (2002) De novo peptide sequencing via manual interpretation of MS/MS spectra. Curr Protoc Protein Sci Chapter 16:Unit 16 11Google Scholar
  24. 24.
    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533PubMedCrossRefGoogle Scholar
  25. 25.
    Purcell AW (2004) Isolation and characterization of naturally processed MHC-bound peptides from the surface of antigen-presenting cells. Methods Mol Biol 251:291–306PubMedGoogle Scholar
  26. 26.
    Ding W, Nothaft H, Szymanski CM, Kelly J (2009) Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 8:2170–2185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Luc Tessier
    • 1
  • Kelly M. Fulton
    • 1
  • Susan M. Twine
    • 1
  1. 1.Human Health Therapeutics PortfolioNational Research Council CanadaOttawaCanada

Personalised recommendations