Advertisement

Chemo-Enzymatic Production of O-Glycopeptides for the Detection of Serum Glycopeptide Antibodies

  • Alexander Nøstdal
  • Hans H. Wandall
Part of the Methods in Molecular Biology book series (MIMB, volume 1061)

Abstract

Protein microarray is a highly sensitive tool for antibody detection in serum. Monitoring of patients’ antibody titers to specific antigens is increasingly employed in the diagnosis of several conditions, ranging from infectious diseases, allergies, autoimmune diseases, and cancer. In this protocol we present a detailed method for enzymatic generation of disease-specific O-glycopeptides and how to monitor the antibody response to these in serum using microarray technology.

Key words

Glycopeptide microarray GalNAc Sialylation Serum biomarkers Autoantibodies Posttranslational modification Glycosylation 

References

  1. 1.
    Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson WH (2006) Antigen arrays for antibody profiling. Curr Opin Chem Biol 10:67–72PubMedCrossRefGoogle Scholar
  3. 3.
    Chevaliez S, Pawlotsky JM (2008) Diagnosis and management of chronic viral hepatitis: antigens, antibodies and viral genomes. Best Pract Res Clin Gastroenterol 22:1031–1048PubMedCrossRefGoogle Scholar
  4. 4.
    Murdoch DR, O'Brien KL, Driscoll AJ, Karron RA, Bhat N (2012) Laboratory methods for determining pneumonia etiology in children. Clin Infect Dis 54(Suppl 2):S146–S152PubMedCrossRefGoogle Scholar
  5. 5.
    Fall BI, Eberlein-Konig B, Behrendt H, Niessner R, Ring J, Weller MG (2003) Microarrays for the screening of allergen-specific IgE in human serum. Anal Chem 75:556–562PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrer M, Sanz ML, Sastre J, Bartra J, del Cuvillo A, Montoro J, Jauregui I, Davila I, Mullol J, Valero A (2009) Molecular diagnosis in allergology: application of the microarray technique. J Investig Allergol Clin Immunol 19(Suppl 1):19–24PubMedGoogle Scholar
  7. 7.
    Leslie D, Lipsky P, Notkins AL (2001) Autoantibodies as predictors of disease. J Clin Invest 108:1417–1422PubMedGoogle Scholar
  8. 8.
    Routsias JG, Tzioufas AG, Moutsopoulos HM (2004) The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin Chim Acta 340:1–25PubMedCrossRefGoogle Scholar
  9. 9.
    Tainsky MA (2009) Genomic and proteomic biomarkers for cancer: a multitude of opportunities. Biochim Biophys Acta 1796:176–193PubMedGoogle Scholar
  10. 10.
    Anderson KS, LaBaer J (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J Proteome Res 4:1123–1133PubMedCrossRefGoogle Scholar
  11. 11.
    Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780:546–563PubMedCrossRefGoogle Scholar
  12. 12.
    Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH (2010) Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 128(8):1860–1871CrossRefGoogle Scholar
  13. 13.
    Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Taylor-Papadimitriou J, Burchell J, Clausen H (2010) Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 70:1306–1313PubMedCrossRefGoogle Scholar
  14. 14.
    Clo E, Kracun SK, Nudelman AS, Jensen KJ, Liljeqvist JA, Olofsson S, Bergstrom T, Blixt O (2012) Characterization of the viral O-glycopeptidome: a novel tool of relevance for vaccine design and serodiagnosis. J Virol 86:6268–6278PubMedCrossRefGoogle Scholar
  15. 15.
    Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 92:11810–11813PubMedCrossRefGoogle Scholar
  16. 16.
    Pereira-Faca SR, Kuick R, Puravs E, Zhang Q, Krasnoselsky AL, Phanstiel D, Qiu J, Misek DE, Hinderer R, Tammemagi M, Landi MT, Caporaso N, Pfeiffer R, Edelstein C, Goodman G, Barnett M, Thornquist M, Brenner D, Hanash SM (2007) Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer. Cancer Res 67:12000–12006PubMedCrossRefGoogle Scholar
  17. 17.
    Stockert E, Jager E, Chen YT, Scanlan MJ, Gout I, Karbach J, Arand M, Knuth A, Old LJ (1998) A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med 187:1349–1354PubMedCrossRefGoogle Scholar
  18. 18.
    Mintz PJ, Kim J, Do KA, Wang X, Zinner RG, Cristofanilli M, Arap MA, Hong WK, Troncoso P, Logothetis CJ, Pasqualini R, Arap W (2003) Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 21:57–63PubMedCrossRefGoogle Scholar
  19. 19.
    Anderson KS, Ramachandran N, Wong J, Raphael JV, Hainsworth E, Demirkan G, Cramer D, Aronzon D, Hodi FS, Harris L, Logvinenko T, LaBaer J (2008) Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res 7:1490–1499PubMedCrossRefGoogle Scholar
  20. 20.
    Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90PubMedCrossRefGoogle Scholar
  21. 21.
    Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H (2006) A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314:304–308PubMedCrossRefGoogle Scholar
  22. 22.
    Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci U S A 98:1142–1147PubMedCrossRefGoogle Scholar
  23. 23.
    Opdenakker G, Dillen C, Fiten P, Martens E, Van Aelst I, Van den Steen PE, Nelissen I, Starckx S, Descamps FJ, Hu J, Piccard H, Van Damme J, Wormald MR, Rudd PM, Dwek RA (2006) Remnant epitopes, autoimmunity and glycosylation. Biochim Biophys Acta 1760:610–615PubMedCrossRefGoogle Scholar
  24. 24.
    Axford JS, Sumar N, Alavi A, Isenberg DA, Young A, Bodman KB, Roitt IM (1992) Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest 89:1021–1031PubMedCrossRefGoogle Scholar
  25. 25.
    Delves PJ (1998) The role of glycosylation in autoimmune disease. Autoimmunity 27:239–253PubMedCrossRefGoogle Scholar
  26. 26.
    Olofsson S, Blomberg J (1977) Studies on glycopeptides of Herpes simplex virus infected cells. Arch Virol 55:293–304PubMedCrossRefGoogle Scholar
  27. 27.
    Brennan PJ, Steiner SM, Courtney RJ, Skelly J (1976) Metabolism of galactose in herpes simplex virus-infected cells. Virology 69:216–228PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D, Smith M (2002) MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 7:209–221PubMedCrossRefGoogle Scholar
  29. 29.
    Rughetti A, Pellicciotta I, Biffoni M, Backstrom M, Link T, Bennet EP, Clausen H, Noll T, Hansson GC, Burchell JM, Frati L, Taylor-Papadimitriou J, Nuti M (2005) Recombinant tumor-associated MUC1 glycoprotein impairs the differentiation and function of dendritic cells. J Immunol 174:7764–7772PubMedGoogle Scholar
  30. 30.
    Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (1997) Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272:23503–23514PubMedCrossRefGoogle Scholar
  31. 31.
    Bennett EP, Hassan H, Mandel U, Mirgorodskaya E, Roepstorff P, Burchell J, Taylor-Papadimitriou J, Hollingsworth MA, Merkx G, van Kessel AG, Eiberg H, Steffensen R, Clausen H (1998) Cloning of a human UDP-N-acetyl-alpha-D-Galactosamine:polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273:30472–30481PubMedCrossRefGoogle Scholar
  32. 32.
    Ikehara Y, Kojima N, Kurosawa N, Kudo T, Kono M, Nishihara S, Issiki S, Morozumi K, Itzkowitz S, Tsuda T, Nishimura SI, Tsuji S, Narimatsu H (1999) Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9:1213–1224PubMedCrossRefGoogle Scholar
  33. 33.
    Iwai T, Inaba N, Naundorf A, Zhang Y, Gotoh M, Iwasaki H, Kudo T, Togayachi A, Ishizuka Y, Nakanishi H, Narimatsu H (2002) Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem 277:12802–12809PubMedCrossRefGoogle Scholar
  34. 34.
    Mirgorodskaya E, Hassan H, Wandall HH, Clausen H, Roepstorff P (1999) Partial vapor-phase hydrolysis of peptide bonds: a method for mass spectrometric determination of O-glycosylated sites in glycopeptides. Anal Biochem 269:54–65PubMedCrossRefGoogle Scholar
  35. 35.
    Pedersen JW, Bennett EP, Schjoldager KT, Meldal M, Holmer AP, Blixt O, Clo E, Levery SB, Clausen H, Wandall HH (2011) Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem 286:32684–32696PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexander Nøstdal
    • 1
  • Hans H. Wandall
    • 1
  1. 1.Department of Cellular and Molecular MedicineUniversity of CopenhagenKøbenhavnDenmark

Personalised recommendations