Skip to main content

Flow Cytometry and Sorting in Arabidopsis

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Flow cytometry, and the accompanying technology of cell sorting, represents an established and valuable experimental platform for the analysis of cellular populations. Applications involving higher plants, which started to emerge around 30 years ago, are now widely employed both to provide unique information regarding fundamental questions in basic and applied bioscience and to advance agricultural productivity in practical ways. Further developments of this platform are being actively pursued, promising additional advances in our understanding of the interactions of cells within the complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types and second that their individual cells are generally larger than those of mammals.

This chapter focuses on the use of flow cytometry and cell sorting with the model species Arabidopsis thaliana, in particular addressing (1) fluorescence in vivo labeling of specific cell types, (2) fluorescence-activated sorting of protoplasts and nuclei, and (3) transcriptome analyses using sorted protoplasts and nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell PR, Helmsley AR (2000) Green plants: their origin and diversity. Cambridge University Press, Cambridge, 361 pp

    Book  Google Scholar 

  2. Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  3. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  4. Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    Article  PubMed  CAS  Google Scholar 

  5. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  PubMed  CAS  Google Scholar 

  6. Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  7. Harkins KR, Galbraith DW (1984) Flow sorting and culture of plant protoplasts. Physiol Plant 60:43–52

    Article  Google Scholar 

  8. Galbraith DW (1990) Isolation and flow cytometric characterization of plant protoplasts. Methods Cell Biol 33:527–547

    Article  PubMed  CAS  Google Scholar 

  9. Galbraith DW, Bartos J, Dolezel J (2005) Flow cytometry and cell sorting in plant biotechnology. In: Sklar LA (ed) Flow cytometry in biotechnology. Oxford University Press, New York, pp 291–322

    Google Scholar 

  10. Galbraith DW, Grebenok RJ, Lambert GM, Sheen J (1995) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Cell Biol 50:3–12

    Article  PubMed  CAS  Google Scholar 

  11. Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    Article  PubMed  CAS  Google Scholar 

  12. Galbraith DW, Herzenberg LA, Anderson M (1999) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Enzymol 320:296–315

    Article  Google Scholar 

  13. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  14. Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell-type specific expression profiling in plants using fluorescent reporter lines, protoplasting, and cell sorting. Nat Methods 2:1–5

    Article  Google Scholar 

  15. Yadav RK, Girke T, Pasala S, Xie MT, Reddy V (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106:4941–4946

    Article  PubMed  CAS  Google Scholar 

  16. Sheen, J. (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/

  17. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  PubMed  CAS  Google Scholar 

  18. Chattopadhyay PK, Perfetto SP, Yu J, Roederer M (2010) The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:334–348

    Article  PubMed  CAS  Google Scholar 

  19. Galbraith DW, Harkins KR, Jefferson RA (1988) Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry 9:75–83

    Article  PubMed  CAS  Google Scholar 

  20. Harkins KR, Jefferson RA, Kavanagh TA, Bevan MW, Galbraith DW (1990) Expression of photosynthesis-related gene fusions is restricted by cell-type in transgenic plants and in transfected protoplasts. Proc Natl Acad Sci U S A 87:816–820

    Article  PubMed  CAS  Google Scholar 

  21. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  22. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    Article  PubMed  CAS  Google Scholar 

  23. Snapp EL (2009) Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol 19:649–655

    Article  PubMed  CAS  Google Scholar 

  24. Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177

    Article  PubMed  CAS  Google Scholar 

  25. Ckurshumova W, Caragea AE, Goldstein RS, Berleth T (2011) Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants. Mol Plant 4:794–804

    Article  PubMed  CAS  Google Scholar 

  26. Galbraith DW (2004) The rainbow of fluorescent proteins. Methods Cell Biol 75:153–169

    Article  PubMed  CAS  Google Scholar 

  27. Rizzo MA, Davidson MW, Piston DW (2009). Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb Protoc, doi: 10.1101/pdb.top63

  28. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  PubMed  CAS  Google Scholar 

  29. Yamazaki T, Takata N, Uemura M, Kawamura Y (2010) Arabidopsis synaptotagmin SYT1, a Type I signal-anchor protein, requires tandem C2 domains for delivery to the plasma membrane. J Biol Chem 285:23163–23174

    Google Scholar 

  30. Mena MA, Treynor TP, Mayo SL, Daugherty PS (2006) Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24:1569–1571

    Article  PubMed  CAS  Google Scholar 

  31. Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J 59:150–162

    Article  PubMed  CAS  Google Scholar 

  32. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  PubMed  CAS  Google Scholar 

  33. Goedhart J, van Weeren L, Hink MA, Vischer NOE, Jalink K, Gadella TWJ (2010) Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat Methods 7:137–139

    Article  PubMed  CAS  Google Scholar 

  34. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751. doi:10.1038/ncomms1738

    Article  PubMed  Google Scholar 

  35. Boisnard-Lorig C, Colon-Carmona A, Bauch W, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE:YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    PubMed  CAS  Google Scholar 

  36. Federici F, Dupuy L, Laplaze L, Heisler M, Haseloff J (2012) Integrated genetic and computation methods for in planta cytometry. Nat Methods 9:483–485

    Article  PubMed  CAS  Google Scholar 

  37. Mann DGJ, Abercrombie LA, Rudis MR, Millwood RJ, Dunlap JR, Stewart CN Jr. (2012) Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnol 12:17, doi:10.1186/1472-6750-12-17

  38. Collier S, Pendle A, Boudonck K, van Rij T, Dolan L, Shaw P (2006) A distant coilin homologue is required for the formation of Cajal bodies in Arabidopsis. Mol Biol Cell 17:2942–2951

    Article  PubMed  CAS  Google Scholar 

  39. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  40. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  41. Cutler SR, Ehrhardt DW, Somerville CR (2000) Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A 97:3718–3723

    Article  PubMed  CAS  Google Scholar 

  42. Grebenok RJ, Pierson EA, Lambert GM, Gong F-C, Afonso CL, Haldeman-Cahill R, Carrington JC, Galbraith DW (1997) Green-fluorescent protein fusions for efficient characterization of nuclear localization signals. Plant J 11:573–586

    Article  PubMed  CAS  Google Scholar 

  43. Millar AH, Carrie C, Pogson B, Whelan J (2009) Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 21:1625–1631

    Article  PubMed  CAS  Google Scholar 

  44. Tsien RY (1997) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  Google Scholar 

  45. Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459–461

    Article  PubMed  CAS  Google Scholar 

  46. Grebenok RJ, Lambert GM, Galbraith DW (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12:685–696

    Article  CAS  Google Scholar 

  47. Chytilova E, Macas J, Sliwinska E, Rafelski S, Lambert GM, Galbraith DW (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11:2733–2741

    Article  PubMed  CAS  Google Scholar 

  48. Zhang CQ, Gong FC, Lambert GM, Galbraith DW (2005) Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods 1(1):7. doi:10.1186/1746-4811-1-7

    Article  PubMed  CAS  Google Scholar 

  49. Zhang CQ, Barthelson RA, Lambert GM, Galbraith DW (2008) Characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147:30–40

    Article  PubMed  CAS  Google Scholar 

  50. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV (2011) An enhanced monomeric blue fluorescent protein with high chemical stability of the chromophore. PLoS One 6(12):e28674. doi:10.1371/journal.pone.0028674

    Article  PubMed  CAS  Google Scholar 

  51. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  52. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557

    Article  PubMed  CAS  Google Scholar 

  53. Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, Campbell RE, Adams SR, Gross LA, Ma W, Alber T, Tsien RY (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16:1169–1179

    Article  PubMed  CAS  Google Scholar 

  54. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, Gorodnicheva TV, Strukova L, Shidlovskiy KM, Britanova OV, Zaraisky AG, Lukyanov KA, Loschenov VB, Luker GD, Chudakov DM (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–830

    Article  PubMed  CAS  Google Scholar 

  55. Nawy T, Lee J-Y, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  56. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  PubMed  CAS  Google Scholar 

  57. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  PubMed  CAS  Google Scholar 

  58. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A 105:803–808

    Article  PubMed  CAS  Google Scholar 

  59. Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN (2012) High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res 22:163–176

    Article  PubMed  CAS  Google Scholar 

  60. Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng XH, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLOS Genet 8(1):e1002446. doi:10.1371/journal.pgen.1002446

    Article  PubMed  CAS  Google Scholar 

  61. Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN (2012) The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 109:6811–6818

    Article  PubMed  CAS  Google Scholar 

  62. Li M, Doll J, Weckermann K, Oecking C, Berendzen K-W, Schöffl F (2010) Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur J Cell Biol 89:126–132

    Article  PubMed  CAS  Google Scholar 

  63. Li M, Berendzen K, Schöffl F (2010) Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol Biol 73:559–567

    Article  PubMed  CAS  Google Scholar 

  64. Bargmann BOR, Birnbaum KD (2009) Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts. Plant Physiol 149:1231–1239

    Article  PubMed  CAS  Google Scholar 

  65. Galbraith DW, Janda J, Lambert GM (2011) Multiparametric analysis, sorting, and transcriptional profiling of plant protoplasts and nuclei according to cell type. Methods Mol Biol 699:407–429

    Article  PubMed  CAS  Google Scholar 

  66. Galbraith DW, Lucretti S (2000) Large Particle Sorting. In: Radbruch A (ed) Flow cytometry and cell sorting, 2nd edn. Springer, Berlin, pp 293–317

    Chapter  Google Scholar 

  67. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  68. Deyholos MK, Galbraith DW (2001) High-density DNA microarrays for gene expression analysis. Cytometry 43:229–238

    Article  PubMed  CAS  Google Scholar 

  69. Galbraith DW (2006) DNA microarray analyses in higher plants. OMICS: A J of Integrative Biol 10:455–473

    Article  CAS  Google Scholar 

  70. Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  PubMed  CAS  Google Scholar 

  71. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682

    Article  PubMed  CAS  Google Scholar 

  72. Harkins KR, Galbraith DW (1987) Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry 8:60–71

    Article  PubMed  CAS  Google Scholar 

  73. Applied Biosystems Technical (2009) Application Note: Single-Cell Whole Transcriptome Profiling With the SOLiD System. http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_065392.pdf

  74. Kurimoto K, Yabuta Y, Ohinata Y, Saitou M (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2:739–752

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of the development of the methods described in this chapter involved support from the NSF Plant Genome Research Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Galbraith, D.W. (2014). Flow Cytometry and Sorting in Arabidopsis. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics