Skip to main content

Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics

  • Protocol
  • First Online:
Arabidopsis Protocols

Abstract

The Arabidopsis-related model species (ARMS) Thellungiella salsuginea and Thellungiella parvula have generated broad interest in salt stress research. While general growth characteristics of these species are similar to Arabidopsis, some aspects of their life cycle require particular attention in order to obtain healthy plants, with a large production of seeds in a relatively short time. This chapter describes basic procedures for growth, maintenance, and Agrobacterium-mediated transformation of ARMS. Where appropriate, differences in requirements between Thellungiella spp. and Arabidopsis are highlighted, along with basic growth requirements of other less studied candidate model species. Current techniques for comparative genomics analysis between Arabidopsis and ARMS are also described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  2. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  3. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  PubMed  CAS  Google Scholar 

  4. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488

    Article  Google Scholar 

  5. Bohnert HJ, Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    Article  CAS  Google Scholar 

  6. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  7. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  8. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715–725

    PubMed  CAS  Google Scholar 

  9. Flowers TJ, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  10. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234

    Article  PubMed  CAS  Google Scholar 

  11. Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  PubMed  CAS  Google Scholar 

  12. Al-Shehbaz IA, O’Kane SL (1995) Placement of Arabidopsis parvula in Thellungiella (Brassicaceae). Novon 5:309–310

    Article  Google Scholar 

  13. Al-Shehbaz IA, O’Kane SL, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307

    Article  Google Scholar 

  14. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  15. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu JK (2001) Learning from the Arabidopsis experience: the next gene search paradigm. Plant Physiol 127:1354–1360

    Article  PubMed  CAS  Google Scholar 

  16. Orsini F, Paino D’Urzo M, Inan G et al (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798

    Article  PubMed  CAS  Google Scholar 

  17. Wu HJ, Zhang Z, Wang J-Y, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci U S A 109:12219–12224

    Article  PubMed  CAS  Google Scholar 

  18. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130

    Article  PubMed  CAS  Google Scholar 

  19. Inan G, Zhang Q, Pinghua L et al (2004) Salt cress: a halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  PubMed  CAS  Google Scholar 

  20. Teusink RS, Rahman M, Bressan RA, Jenks MA (2002) Cuticular waxes on Arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula. Int J Plant Sci 163:309–315

    Article  CAS  Google Scholar 

  21. Gong Q, Li P, Ma S, Rupassara I, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  PubMed  CAS  Google Scholar 

  22. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Davenport RJ, Volkov V, Amtmann A (2006) Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 57:1161–1170

    Article  PubMed  CAS  Google Scholar 

  24. Oh DH, Gong Q, Ulanov A, Zhang Q, Li Y, Ma W, Yun DJ, Bressan RA, Bohnert HJ (2007) Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. J Integr Plant Biol 49:1484–1496

    Article  CAS  Google Scholar 

  25. Oh DH, Leidi E, Zhang Q et al (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  PubMed  CAS  Google Scholar 

  26. Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  PubMed  CAS  Google Scholar 

  27. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  28. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  29. Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  30. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697–1709

    Article  PubMed  CAS  Google Scholar 

  31. Wong CE, Li Y, Whitty BR, Diaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574

    Article  PubMed  CAS  Google Scholar 

  32. Wong CE, Li Y, Labbe A, Guevara D et al (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    Article  PubMed  CAS  Google Scholar 

  33. Hu TT, Pattyn P, Bakker EG, Cao J et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  Google Scholar 

  34. Dassanayake M, Oh DH, Haas JS et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040

    Article  PubMed  CAS  Google Scholar 

  36. Oh DH, Dassanayake M, Haas JS et al (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052

    Article  PubMed  CAS  Google Scholar 

  37. Kurtz S, Philippy A, Delcher AL et al (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  38. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  PubMed  CAS  Google Scholar 

  39. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  CAS  Google Scholar 

  40. Aksoy A, Hale WHG, Dixon JM (1999) Capsella bursa-pastoris L. Medic. as a biomonitor of heavy metals. Sci Total Environ 226:177–186

    Article  PubMed  CAS  Google Scholar 

  41. Madejon P, Murillo JM, Maranon T, Valdes B, Rossini Oliva S (2005) Thallium accumulation in floral structures of Hirschfeldia incana (L.) Lagreze-Fossat (Brassicaceae). Bull Environ Contam Toxicol 74:1058–1064

    Article  PubMed  CAS  Google Scholar 

  42. Gisbert C, Clemente R, Navarro-Avino J, Baixauli C, Giner A, Serrano R, Walker DJ, Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–27

    Article  CAS  Google Scholar 

  43. Jimenez-Ambriz G, Petit C, Bourrie I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215

    Article  PubMed  CAS  Google Scholar 

  44. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  PubMed  CAS  Google Scholar 

  45. Popay AI, Roberts EH (1978) Factors involved in the dormancy and germination of Capsella Bursa- Pastoris (L.) Medik. and Senecio Vulgaris L. J Ecol 58:103–122

    Article  Google Scholar 

  46. Pedras MSC, Montaut S, Zaharia IL, Gai Y, Ward DE (2003) Transformation of the host-selective toxin destruxin B by wild crucifers: probing a detoxification pathway. Phytochemistry 64:957–963

    Article  PubMed  CAS  Google Scholar 

  47. Johnston SJ, Pepper AE, Hall AE, Jeffrey Chen Z, Hodnett G, Drabek J, Lopez R, James Price H (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  PubMed  CAS  Google Scholar 

  48. Dittmer HJ (1949) Root hair variations in plant species. Am J Bot 36:152–155

    Article  Google Scholar 

  49. Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    Article  PubMed  Google Scholar 

  50. Santin-Montanya I, Alonso-Prados JL, Villarroya M, Garcıa-Baudin JM (2006) Bioassay for determining sensitivity to sulfosulfuron on seven plant species. J Environ Sci Health B 41:781–793

    Article  PubMed  CAS  Google Scholar 

  51. Weigel D, Ahn JH, Blazquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  52. Wang Z, Li P, Fredricksen M, Gong Z et al (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  53. Taji T, Sakurai T, Mochida K et al (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:115

    Article  PubMed  Google Scholar 

  54. Zhang Y, Lai J, Sun S, Li Y, Liu Y, Liang L, Chen M, Xie Q (2008) Comparison analysis of transcripts from the halophyte Thellungiella halophila. J Integr Plant Biol 50:1327–1335

    Article  PubMed  CAS  Google Scholar 

  55. Wang W, Wu Y, Li Y et al (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99

    Article  PubMed  CAS  Google Scholar 

  56. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  PubMed  CAS  Google Scholar 

  57. Lysak MA, Koch MA (2011) Phylogeny, genome and karyotype evolution of crucifers (Brassicaceae). In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York

    Google Scholar 

  58. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed  Google Scholar 

  59. Lyons E, Pedersen B, Kane J et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148:1772–1781

    Article  PubMed  CAS  Google Scholar 

  60. Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53: 661–673

    Article  PubMed  CAS  Google Scholar 

  61. Ansell SW, Stenøien HK, Grundmann M, Schneider H, Hemp A, Bauer N, Russell SJ, Vogel JC (2010) Population structure and historical biogeography of European Arabidopsis lyrata. Heredity 105(6):543–553

    Article  PubMed  CAS  Google Scholar 

  62. Al-Shehbaz IA, O’Kane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologist, Rockville, MD, pp 1–22

    Google Scholar 

  63. Mitchell-Olds T (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  PubMed  CAS  Google Scholar 

  64. Ratcliffe DA (1994) Arabis petraea. In: Stewart A, Pearman DA, Preston CD (eds) Scarce plants of the British Isles. JNCC, Peterborough, p 51

    Google Scholar 

  65. Sandring S, Argen J (2009) Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata. Evolution 63:1292–1300

    Article  PubMed  Google Scholar 

  66. Thrall PH, Young AG, Burdon JJ (2000) An analysis of mating structure in populations of the annual sea rocket, Cakile maritima (Brassicaceae). Aust J Bot 48:731–738

    Article  Google Scholar 

  67. Barbour MG (1972) Seedling establishment of Cakile maritima at Bodega Head, California. Bull Torrey Bot Club 99:11–16

    Article  Google Scholar 

  68. Maun MA, Lapierre J (1986) Effects of burial by sand on seed germination and seedling emergence of four dune species. Am J Bot 73:450–455

    Article  Google Scholar 

  69. Barbour MG (1970) Germination and early growth of the strand plant Cakile maritime. Bull Torrey Bot Club 97:13–22

    Article  Google Scholar 

Download references

Acknowledgements

Dong-Ha Oh thanks Eric Lyons for great help in setting up T. parvula sequences in CoGe database. Dong-Ha Oh was supported by World Class University Program (R32–10148) at Gyeongsang National University, Republic of Korea, and the Next-Generation BioGreen 21 Program (SSAC, PJ009495), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Batelli, G. et al. (2014). Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics