Skip to main content

Extraction Protocol for Nontargeted NMR and LC-MS Metabolomics-Based Analysis of Hard Coral and Their Algal Symbionts

  • Protocol
  • First Online:
Metabolomics Tools for Natural Product Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1055))

Abstract

Metabolomics and in particular, nontargeted metabolomics, has become a popular technique for the study of biological samples as it provides considerable amounts of information on extractable metabolites and is ideal for studying the metabolic response of an organism to stressors in its environment. One such organism, the symbiotic hard coral, presents its own complexity when considering a metabolomics approach in that it forms intricate associations with an array of symbiotic macro- and microbiota. While not discounting the importance of these many associations to the function of the coral holobiont, the coral-Symbiodinium relationship has been the most studied to date and as such, is the primary focus of this extraction protocol. This protocol provides details for the sample collection, extraction, and measurement of hard coral holobiont metabolites using both 1H nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS). Using this nontargeted metabolomics approach, the holobiont metabolism can be investigated for perturbations resulting from either (1) natural or anthropogenic environmental challenges, (2) the controlled application of stressors, and (3) differences between phenotypes or species. Consequently, this protocol will benefit both environmental and natural products based research of hard coral and their algal symbionts. Every effort has been made to provide the reader with all the details required to perform this protocol, including many of the costly and time consuming “pitfalls” or “traps” that were discovered during its development. As a result, this protocol can be confidently accomplished by those with less experience in the extraction and analysis of symbiotic hard coral, requiring minimal user input whilst ensuring reproducible and reliable results using readily available lab ware and reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  2. Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev 49:43–104

    Google Scholar 

  3. Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD (2009) Microbial disease and the coral holobiont. Trends Microbiol 17:554–562

    Article  PubMed  CAS  Google Scholar 

  4. Adams LM, Cumbo V, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  5. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Systemat 8(1):23–43

    Article  Google Scholar 

  6. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  7. Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 30:485–531

    Article  CAS  Google Scholar 

  8. Lewis DH, Smith DC (1971) The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc R Soc Lond Ser B Biol Sci 178:111–129

    Article  CAS  Google Scholar 

  9. Gordon BR, Leggat W (2010) Symbiodinium-invertebrate symbioses and the role of metabolomics. Mar Drugs 8:2546–2568

    Article  PubMed  CAS  Google Scholar 

  10. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  PubMed  CAS  Google Scholar 

  11. Roth E, Jeon K, Stacey G (1988) Homology in endosymbiotic systems: the term ‘symbiosome’. Molecular genetics of plant microbe interactions. Proceedings of the 4th international symposium on molecular genetics of plant–microbe interaction. pp 220–225

    Google Scholar 

  12. Rands ML, Loughman BC, Douglas AE (1993) The symbiotic interface in an alga invertebrate symbiosis. Proc R Soc Lond Ser B Biol Sci 253:161–165

    Article  Google Scholar 

  13. Dunlap WC, Yamamoto Y (1995) Small-molecular antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Compar Biochem Physiol 112B:106–114

    Google Scholar 

  14. Sunda W, Kieber D, Kiene R, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  PubMed  CAS  Google Scholar 

  15. Trevena AJ, Jones GB, Wright SW, van den Enden RL (2000) Profiles of DMSP, algal pigments, nutrients and salinity in pack ice from eastern Antarctica. J Sea Res 43:265–273

    Article  CAS  Google Scholar 

  16. Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R (2004) Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 70:4692–4701

    Article  PubMed  CAS  Google Scholar 

  17. Sjoblad RD, Mitchell R (1979) Chemotactic responses of Vibrio alginolyticus to algal extracellular products. Canadian J Microbiol 25:964–967

    Article  CAS  Google Scholar 

  18. Raina J-B, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101–108

    Article  PubMed  CAS  Google Scholar 

  19. Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519

    Article  PubMed  CAS  Google Scholar 

  20. Trench RK (1971) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc R Soc Lond Ser B Biol Sci 177:251–264

    Article  CAS  Google Scholar 

  21. Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430–7434

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura H, Asari T, Ohizumi Y, Kobayashi J, Yamasu T, Murai A (1993) Isolation of zooxanthellatoxins, novel vasoconstrictive substances from the zooxanthella Symbiodinium sp. Toxicon 31:371–376

    Article  PubMed  CAS  Google Scholar 

  23. Onodera K, Nakamura H, Oba Y, Ojika M (2003) Zooxanthellamide A, a novel polyhydroxy metabolite from a marine dinoflagellate of Symbiodinium sp. Tetrahedron 59:1067–1071

    Article  CAS  Google Scholar 

  24. Nakamura H, Kawase Y, Maruyama K, Murai A (1998) Studies on polyketide metabolites of a symbiotic dinoflagellate, Symbiodinium sp.: a new C30 marine alkaloid, zooxanthellamine, a plausible precursor for zoanthid alkaloids. Bull Chem Soc Jpn 71:781–787

    Article  CAS  Google Scholar 

  25. Viant MR (2008) Environmental metabolomics using 1H-NMR spectroscopy. Methods Mol Biol (Totowa, NJ, United States) 410 (Environmental Genomics):137–150

    Google Scholar 

  26. Tapiolas D, Motti C, Holloway P, Boyle S (2010) High levels of acrylate in the Great Barrier Reef coral Acropora millepora. Coral Reefs 29:621–625

    Article  Google Scholar 

  27. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  28. Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C (2007) Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal Chem 79:1181–1186

    Article  PubMed  CAS  Google Scholar 

  29. Ettinger-Epstein P, Motti CA, De Nys R, Wright AD, Battershill CN, Tapiolas DM (2007) Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J Nat Prod 70:648–651

    Article  PubMed  CAS  Google Scholar 

  30. Beltran A, Suarez M, Rodriguez MA, Vinaixa M, Samino S, Arola L, Correig X, Yanes O (2012) Assessment of compatibility between extraction methods for NMR and LC/MS-based metabolomics. Anal Chem 84:5838–5844

    Article  PubMed  CAS  Google Scholar 

  31. Wakisaka A, Abdoul-Carime H, Yamamoto Y, Kiyozumi Y (1998) Non-ideality of binary mixtures water-methanol and water-acetonitrile from the viewpoint of clustering structure. J Chem Soc Faraday Trans 94:369–374

    Article  CAS  Google Scholar 

  32. Aue WP, Karhan J, Ernst RR (1976) Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J Chem Phys 64:4226–4227

    Article  CAS  Google Scholar 

  33. Thrippleton MJ, Edden RAE, Keeler J (2005) Suppression of strong coupling artefacts in J-spectra. J Magn Reson 174:97–109

    Article  PubMed  CAS  Google Scholar 

  34. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  PubMed  CAS  Google Scholar 

  35. Kelly AE, Ou HD, Withers R, Dotsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124:12013–12019

    Article  PubMed  CAS  Google Scholar 

  36. Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71:2554–2557

    Article  PubMed  CAS  Google Scholar 

  37. Tapiolas DM, Raina J-B, Lutz A, Willis BL, Motti CA (2013) Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. J Exp Mar Biol Ecol 443:85–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council, Centre of Excellence for Coral Reef Studies, and a Science for Management grant from the Great Barrier Reef Marine Park Authority (GBRMPA), Australia. We would also like to thank João Paulo Krajewski for kindly allowing us to use his photograph and Mark Viant and Christian Ludwig for their kind assistance with the DSE-JRES pulse program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gordon, B.R., Leggat, W., Motti, C.A. (2013). Extraction Protocol for Nontargeted NMR and LC-MS Metabolomics-Based Analysis of Hard Coral and Their Algal Symbionts. In: Roessner, U., Dias, D. (eds) Metabolomics Tools for Natural Product Discovery. Methods in Molecular Biology, vol 1055. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-577-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-577-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-576-7

  • Online ISBN: 978-1-62703-577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics