Skip to main content

Neonatal Transplant in Hypoxic Injury

  • Protocol
  • First Online:
Neural Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1059))

Abstract

Hypoxic–ischemic encephalopathy in neonates often causes long-term disabilities. Stem cell therapy may be a successful treatment for HIE. Neurogenic astrocytes with characteristics of neural stem cells (NSCs) can be cultured as adherent monolayers. Following reintroduction into the NSC niche of both neonatal and adult hosts, these astrocytes can be induced to generate neuronal progeny in vitro and in vivo. Thus, neurogenic astrocytes represent promising candidates for cell replacement therapy in HIE. Such an approach requires optimized cell cultivation protocols as well as extensive testing of donor cells to assess their capacity for engraftment, survival, and integration in the HIE animal models. In this chapter, we describe methods of generating the HIE model, generating and culturing monolayer neurogenic astrocytes, and transplanting these cells into HIE animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vannucci RC, Vannucci SJ (1997) A model of perinatal hypoxic–ischemic brain damage. Ann N Y Acad Sci 835:234–249

    Article  PubMed  CAS  Google Scholar 

  2. Giffard RG et al (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506:339–342

    Article  PubMed  CAS  Google Scholar 

  3. Low JA, Lindsay BG, Derrick EJ (1997) Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 177:1391–1394

    Article  PubMed  CAS  Google Scholar 

  4. Mulligan JC et al (1980) Neonatal asphyxia. II. Neonatal mortality and long-term sequelae. J Pediatr 96:903–907

    Article  PubMed  CAS  Google Scholar 

  5. Azzopardi DV et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358

    Article  PubMed  CAS  Google Scholar 

  6. Gluckman PD et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670

    PubMed  Google Scholar 

  7. Shankaran S et al (2005) Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med 353:1574–1584

    Article  PubMed  CAS  Google Scholar 

  8. Simbruner G et al (2012) Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 126:e771–e778

    Article  Google Scholar 

  9. Jacobs SE, Tarnow-Mordi WO (2010) Therapeutic hypothermia for newborn infants with hypoxic–ischaemic encephalopathy. J Paediatr Child Health 46:568–576

    Article  PubMed  Google Scholar 

  10. Cilio MR, Ferriero DM (2010) Synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med 15:293–298

    Article  PubMed  Google Scholar 

  11. Levene MI (2010) Cool treatment for birth asphyxia, but what’s next? Arch Dis Child Fetal Neonatal Ed 95:F154–F157

    Article  PubMed  Google Scholar 

  12. Englund U et al (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A 99:17089–17094

    Article  PubMed  CAS  Google Scholar 

  13. Pimentel-Coelho PM, Mendez-Otero R (2010) Cell therapy for neonatal hypoxic–ischemic encephalopathy. Stem Cells Dev 19:299–310

    Article  PubMed  Google Scholar 

  14. Zheng T et al (2006) Transplantation of multipotent astrocytic stem cells into a rat model of neonatal hypoxic–ischemic encephalopathy. Brain Res 1112:99–105

    Article  PubMed  CAS  Google Scholar 

  15. Borlongan CV, Weiss MD (2011) Baby STEPS: a giant leap for cell therapy in neonatal brain injury. Pediatr Res 70:3–9

    Article  PubMed  Google Scholar 

  16. Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic–ischemic brain damage: evolution of an animal model. Dev Neurosci 27:81–86

    Article  PubMed  CAS  Google Scholar 

  17. Zheng T et al (2006) Neurogenic astrocytes transplanted into the adult mouse lateral ventricle contribute to olfactory neurogenesis, and reveal a novel intrinsic subependymal neuron. Neuroscience 142:175–185

    Article  PubMed  CAS  Google Scholar 

  18. Johnston MV (2001) Excitotoxicity in neonatal hypoxia. Ment Retard Dev Disabil Res Rev 7:229–234

    Article  PubMed  CAS  Google Scholar 

  19. Johnston MV et al (2000) Novel treatments after experimental brain injury. Semin Neonatol 5:75–86

    Article  PubMed  CAS  Google Scholar 

  20. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995

    Article  PubMed  CAS  Google Scholar 

  21. Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ (2001) Early neurodegeneration after hypoxia-ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis 8:207–219

    Article  PubMed  CAS  Google Scholar 

  22. Rorke LB (1992) Anatomical features of the developing brain implicated in pathogenesis of hypoxic–ischemic injury. Brain Pathol 2:211–221

    Article  PubMed  CAS  Google Scholar 

  23. Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90:375–386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zheng, T., Weiss, M.D. (2013). Neonatal Transplant in Hypoxic Injury. In: Reynolds, B., Deleyrolle, L. (eds) Neural Progenitor Cells. Methods in Molecular Biology, vol 1059. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-574-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-574-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-573-6

  • Online ISBN: 978-1-62703-574-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics