Abstract
The Mutator system has proved to be an invaluable tool for elucidating gene function via insertional mutagenesis. Its high copy number, high transposition frequency, relative lack of insertion specificity, and ease of use has made it the preferred method for gene tagging in maize. Recent advances in high throughput sequencing of insertion sites, combined with the availability of large numbers of pre-mutagenized and sequence-indexed stocks, ensure that this resource will only be more useful in the years ahead. Muk is a locus that can silence Mu-active lines, making it possible to ameliorate the phenotypic effects of high numbers of active Mu transposons and reduce the copy number of these elements during introgressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Walbot V (1991) The Mutator transposable element family of maize. Genet Eng 13:1–37
Bennetzen JL (1996) The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204:195–229
Chandler VL, Hardeman KJ (1992) The Mu elements of Zea mays. Adv Genet 30:77–122
Robertson DS (1978) Characterization of a mutator system in maize. Mutat Res 51:21–28
Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genetics 9:192–203
Williams-Carrier R et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177
McCarty D, Meeley R (2009) Transposon resources for forward and reverse genetics in maize. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 561–584
Settles AM et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116
Lisch D, Jiang H (2009) Mutator and MULE transposons. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 277–306
Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66
Slotkin RK, Freeling M, Lisch D (2003) Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165:781–797
Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644
Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504
Tan BC et al (2011) Identification of an active new mutator transposable element in maize. G3 (Bethesda) 1:293–302
Dietrich CR et al (2002) Maize Mu transposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716
Hershberger RJ et al (1995) Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics 140:1087–1098
Qin M, Robertson DS, Ellingboe AH (1991) Cloning of the mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics 129:845–854
James MG et al (1993) DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol 21:1181–1185
Chomet P et al (1991) Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129:261–270
Hershberger RJ, Warren CA, Walbot V (1991) Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA 88:10198–10202
Benito M-I, Walbot V (1997) Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol 17:5165–5175
Eisen JA, Benito MI, Walbot V (1994) Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res 22:2634–2636
Hua-Van A, Capy P (2008) Analysis of the DDE motif in the Mutator superfamily. J Mol Evol 67:670–681
Marquez CP, Pritham EJ (2010) Phantom, a new subclass of Mutator DNA transposons found in insect viruses and widely distributed in animals. Genetics 185:1507–1517
Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol Biol Evol 22:1751–1763
Lisch D, Girard L, Donlin M, Freeling M (1999) Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics 151:331–341
Woodhouse MR, Freeling M, Lisch D (2006) The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172:579–592
Raizada MN, Walbot V (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12:5–21
Lisch D (2005) Pack-MULEs: theft on a massive scale. Bioessays 27:353–355
Jiang N et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573
Walbot V, Rudenko GN (2002) MuDR/Mu transposable elements of maize. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC
Alleman M, Freeling M (1986) The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112:107–119
Doseff A, Martienssen R, Sundaresan V (1991) Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res 19:579–584
Britt AB, Walbot V (1991) Products of Mu excision from the Bronze1 gene of Zea-mays. J Cell Biochem Suppl 99
Lisch D (1995) Genetic and molecular characterization of the Mutator system in maize. University of California at Berkeley, Berkeley, CA
Yu W et al (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175:31–39
Lisch D, Chomet P, Freeling M (1995) Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139:1777–1796
Lisch D, Freeling M (1994) Loss of Mutator activity in a minimal line. Maydica 39:289–300
Donlin MJ, Lisch D, Freeling M (1995) Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. Plant Cell 7:1989–2000
Li J, Wen TJ, Schnable PS (2008) Role of RAD51 in the repair of MuDR-induced double-strand breaks in maize (Zea mays L.). Genetics 178:57–66
Hsia A-P, Schnable PS (1996) DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142:603–618
Liu S et al (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733
Fernandes J et al (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82
Robertson DS, Stinard PS (1989) Genetic analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize. Dev Genet 10:482–506
Robertson DS, Stinard PS (1992) Genetic regulation of somatic mutability of two Mu-induced a1 mutants of maize. Theor Appl Genet 84:225–236
O’Reilly C et al (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J 4:877–882
Singh J, Freeling M, Lisch D (2008) A position effect on the heritability of epigenetic silencing. PLoS Genet 4:e1000216
Robertson DS (1986) Genetic studies on the loss of mu mutator activity in maize. Genetics 113:765–773
Rudenko GN, Ono A, Walbot V (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J 33:1013–1025
Martienssen R, Baron A (1994) Coordinate suppression of mutations caused by Robertson’s mutator transposons in maize. Genetics 136:1157–1170
Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet 208:45–51
Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83:1767–1771
Walbot V et al (1988) Regulation of mutator activities in maize. Basic Life Sci 47:121–135
Brown J, Sundaresan V (1992) Genetic study of the loss and restoration of mutator transposon activity in maize—evidence against dominant-negative regulator associated with loss of activity. Genetics 130:889–898
Li H, Freeling M, Lisch D (2010) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107:22184–22189
Nogueira FT et al (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755
Wang X et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069
Zhang X et al (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129
Lafos M et al (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040
Alleman M et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298
Woodhouse MR, Freeling M, Lisch D (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4:e339
Kim SH, Walbot V (2003) Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities. Plant Cell 15:2430–2447
Molnar A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215
Walbot V, Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211:27–34
McCarty DR et al (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61
Bensen RJ et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84
Skibbe DS et al (2009) Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant J 59:622–633
Slotkin RK, Freeling M, Lisch D (2007) Mu killer locus available in multiple inbred backgrounds. Maize Genetics Cooperation Newsletter 81
Fowler JE, Meuhlbauer GJ, Freeling M (1996) Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics 143:489–503
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media, New York
About this protocol
Cite this protocol
Lisch, D. (2013). Regulation of the Mutator System of Transposons in Maize. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_9
Download citation
DOI: https://doi.org/10.1007/978-1-62703-568-2_9
Published:
Publisher Name: Humana Press, Totowa, NJ
Print ISBN: 978-1-62703-567-5
Online ISBN: 978-1-62703-568-2
eBook Packages: Springer Protocols