Skip to main content

Regulation of the Mutator System of Transposons in Maize

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

The Mutator system has proved to be an invaluable tool for elucidating gene function via insertional mutagenesis. Its high copy number, high transposition frequency, relative lack of insertion specificity, and ease of use has made it the preferred method for gene tagging in maize. Recent advances in high throughput sequencing of insertion sites, combined with the availability of large numbers of pre-mutagenized and sequence-indexed stocks, ensure that this resource will only be more useful in the years ahead. Muk is a locus that can silence Mu-active lines, making it possible to ameliorate the phenotypic effects of high numbers of active Mu transposons and reduce the copy number of these elements during introgressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walbot V (1991) The Mutator transposable element family of maize. Genet Eng 13:1–37

    Article  CAS  Google Scholar 

  2. Bennetzen JL (1996) The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204:195–229

    Article  PubMed  CAS  Google Scholar 

  3. Chandler VL, Hardeman KJ (1992) The Mu elements of Zea mays. Adv Genet 30:77–122

    Article  PubMed  CAS  Google Scholar 

  4. Robertson DS (1978) Characterization of a mutator system in maize. Mutat Res 51:21–28

    Article  Google Scholar 

  5. Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genetics 9:192–203

    CAS  Google Scholar 

  6. Williams-Carrier R et al (2010) Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J 63:167–177

    PubMed  CAS  Google Scholar 

  7. McCarty D, Meeley R (2009) Transposon resources for forward and reverse genetics in maize. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 561–584

    Chapter  Google Scholar 

  8. Settles AM et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116

    Article  PubMed  Google Scholar 

  9. Lisch D, Jiang H (2009) Mutator and MULE transposons. In: Bennetzen J, Hake S (eds) Handbook of maize: genetics and genomics. Springer, Berlin, pp 277–306

    Chapter  Google Scholar 

  10. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  11. Slotkin RK, Freeling M, Lisch D (2003) Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165:781–797

    PubMed  CAS  Google Scholar 

  12. Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  PubMed  CAS  Google Scholar 

  13. Lisch D (2002) Mutator transposons. Trends Plant Sci 7:498–504

    Article  PubMed  CAS  Google Scholar 

  14. Tan BC et al (2011) Identification of an active new mutator transposable element in maize. G3 (Bethesda) 1:293–302

    Article  CAS  Google Scholar 

  15. Dietrich CR et al (2002) Maize Mu transposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716

    PubMed  CAS  Google Scholar 

  16. Hershberger RJ et al (1995) Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. Genetics 140:1087–1098

    PubMed  CAS  Google Scholar 

  17. Qin M, Robertson DS, Ellingboe AH (1991) Cloning of the mutator transposable element MuA2, a putative regulator of somatic mutability of the a1-Mum2 allele in maize. Genetics 129:845–854

    PubMed  CAS  Google Scholar 

  18. James MG et al (1993) DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol 21:1181–1185

    Article  PubMed  CAS  Google Scholar 

  19. Chomet P et al (1991) Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129:261–270

    PubMed  CAS  Google Scholar 

  20. Hershberger RJ, Warren CA, Walbot V (1991) Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA 88:10198–10202

    Article  PubMed  CAS  Google Scholar 

  21. Benito M-I, Walbot V (1997) Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol 17:5165–5175

    PubMed  CAS  Google Scholar 

  22. Eisen JA, Benito MI, Walbot V (1994) Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res 22:2634–2636

    Article  PubMed  CAS  Google Scholar 

  23. Hua-Van A, Capy P (2008) Analysis of the DDE motif in the Mutator superfamily. J Mol Evol 67:670–681

    Article  PubMed  CAS  Google Scholar 

  24. Marquez CP, Pritham EJ (2010) Phantom, a new subclass of Mutator DNA transposons found in insect viruses and widely distributed in animals. Genetics 185:1507–1517

    Article  PubMed  CAS  Google Scholar 

  25. Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol Biol Evol 22:1751–1763

    Article  PubMed  CAS  Google Scholar 

  26. Lisch D, Girard L, Donlin M, Freeling M (1999) Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics 151:331–341

    PubMed  CAS  Google Scholar 

  27. Woodhouse MR, Freeling M, Lisch D (2006) The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172:579–592

    Article  PubMed  CAS  Google Scholar 

  28. Raizada MN, Walbot V (2000) The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S-driven MURA cDNA in transgenic maize. Plant Cell 12:5–21

    PubMed  CAS  Google Scholar 

  29. Lisch D (2005) Pack-MULEs: theft on a massive scale. Bioessays 27:353–355

    Article  PubMed  CAS  Google Scholar 

  30. Jiang N et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  31. Walbot V, Rudenko GN (2002) MuDR/Mu transposable elements of maize. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  32. Alleman M, Freeling M (1986) The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112:107–119

    PubMed  CAS  Google Scholar 

  33. Doseff A, Martienssen R, Sundaresan V (1991) Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res 19:579–584

    Article  PubMed  CAS  Google Scholar 

  34. Britt AB, Walbot V (1991) Products of Mu excision from the Bronze1 gene of Zea-mays. J Cell Biochem Suppl 99

    Google Scholar 

  35. Lisch D (1995) Genetic and molecular characterization of the Mutator system in maize. University of California at Berkeley, Berkeley, CA

    Google Scholar 

  36. Yu W et al (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175:31–39

    Article  PubMed  Google Scholar 

  37. Lisch D, Chomet P, Freeling M (1995) Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139:1777–1796

    PubMed  CAS  Google Scholar 

  38. Lisch D, Freeling M (1994) Loss of Mutator activity in a minimal line. Maydica 39:289–300

    Google Scholar 

  39. Donlin MJ, Lisch D, Freeling M (1995) Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. Plant Cell 7:1989–2000

    PubMed  CAS  Google Scholar 

  40. Li J, Wen TJ, Schnable PS (2008) Role of RAD51 in the repair of MuDR-induced double-strand breaks in maize (Zea mays L.). Genetics 178:57–66

    Article  PubMed  CAS  Google Scholar 

  41. Hsia A-P, Schnable PS (1996) DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142:603–618

    PubMed  CAS  Google Scholar 

  42. Liu S et al (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    Article  PubMed  Google Scholar 

  43. Fernandes J et al (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82

    Article  PubMed  Google Scholar 

  44. Robertson DS, Stinard PS (1989) Genetic analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize. Dev Genet 10:482–506

    Article  Google Scholar 

  45. Robertson DS, Stinard PS (1992) Genetic regulation of somatic mutability of two Mu-induced a1 mutants of maize. Theor Appl Genet 84:225–236

    Article  Google Scholar 

  46. O’Reilly C et al (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. EMBO J 4:877–882

    PubMed  Google Scholar 

  47. Singh J, Freeling M, Lisch D (2008) A position effect on the heritability of epigenetic silencing. PLoS Genet 4:e1000216

    Article  PubMed  Google Scholar 

  48. Robertson DS (1986) Genetic studies on the loss of mu mutator activity in maize. Genetics 113:765–773

    PubMed  CAS  Google Scholar 

  49. Rudenko GN, Ono A, Walbot V (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J 33:1013–1025

    Article  PubMed  CAS  Google Scholar 

  50. Martienssen R, Baron A (1994) Coordinate suppression of mutations caused by Robertson’s mutator transposons in maize. Genetics 136:1157–1170

    PubMed  CAS  Google Scholar 

  51. Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet 208:45–51

    Article  CAS  Google Scholar 

  52. Chandler VL, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83:1767–1771

    Article  PubMed  CAS  Google Scholar 

  53. Walbot V et al (1988) Regulation of mutator activities in maize. Basic Life Sci 47:121–135

    PubMed  CAS  Google Scholar 

  54. Brown J, Sundaresan V (1992) Genetic study of the loss and restoration of mutator transposon activity in maize—evidence against dominant-negative regulator associated with loss of activity. Genetics 130:889–898

    PubMed  CAS  Google Scholar 

  55. Li H, Freeling M, Lisch D (2010) Epigenetic reprogramming during vegetative phase change in maize. Proc Natl Acad Sci USA 107:22184–22189

    Article  PubMed  CAS  Google Scholar 

  56. Nogueira FT et al (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755

    Article  PubMed  CAS  Google Scholar 

  57. Wang X et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    Article  PubMed  CAS  Google Scholar 

  58. Zhang X et al (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  Google Scholar 

  59. Lafos M et al (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040

    Article  PubMed  CAS  Google Scholar 

  60. Alleman M et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442:295–298

    Article  PubMed  CAS  Google Scholar 

  61. Woodhouse MR, Freeling M, Lisch D (2006) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4:e339

    Article  PubMed  Google Scholar 

  62. Kim SH, Walbot V (2003) Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities. Plant Cell 15:2430–2447

    Article  PubMed  CAS  Google Scholar 

  63. Molnar A, Melnyk C, Baulcombe DC (2011) Silencing signals in plants: a long journey for small RNAs. Genome Biol 12:215

    Article  PubMed  CAS  Google Scholar 

  64. Walbot V, Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211:27–34

    Article  PubMed  CAS  Google Scholar 

  65. McCarty DR et al (2005) Steady-state transposon mutagenesis in inbred maize. Plant J 44:52–61

    Article  PubMed  CAS  Google Scholar 

  66. Bensen RJ et al (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84

    PubMed  CAS  Google Scholar 

  67. Skibbe DS et al (2009) Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant J 59:622–633

    Article  PubMed  CAS  Google Scholar 

  68. Slotkin RK, Freeling M, Lisch D (2007) Mu killer locus available in multiple inbred backgrounds. Maize Genetics Cooperation Newsletter 81

    Google Scholar 

  69. Fowler JE, Meuhlbauer GJ, Freeling M (1996) Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics 143:489–503

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lisch, D. (2013). Regulation of the Mutator System of Transposons in Maize. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics