Skip to main content

Molecular Genetics and Epigenetics of CACTA Elements

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington DC, pp 565–610

    Google Scholar 

  2. DeMarco R, Venancio TM, Verjovski-Almeida S (2006) SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol 6:89

    Article  PubMed  Google Scholar 

  3. Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  4. Wicker T et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  5. Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  6. McClintock B (1951) Mutable loci in maize. Carnegie Inst Wash Yr Bk 50:174–181

    Google Scholar 

  7. McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Yr Bk 53:254–260

    Google Scholar 

  8. Peterson PA (1953) A mutable pale green locus in maize. Genetics 38:682–683

    Google Scholar 

  9. Peterson PA (1965) A relationship between the Spm and En control systems in maize. Am Nat 99:391–398

    Article  Google Scholar 

  10. Fedoroff NV (1983) Controlling elements in maize. In: Shapiro J (ed) Mobile genetic elements. Academic, New York, pp 1–63

    Google Scholar 

  11. Masson P et al (1987) Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117:117–137

    PubMed  CAS  Google Scholar 

  12. Schiefelbein JW et al (1985) Deletions within a defective suppressor-mutator element in maize affect the frequency and developmental timing of its excision from the bronze locus. Proc Natl Acad Sci USA 82:4783–4787

    Article  PubMed  CAS  Google Scholar 

  13. Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  14. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  15. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  PubMed  CAS  Google Scholar 

  16. Kwon S-J et al (2006) CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids. Mol Cells 21:360–366

    PubMed  CAS  Google Scholar 

  17. Langdon T et al (2003) A high-copy-number CACTA family transposon in temperate grasses and cereals. Genetics 163:1097–1108

    PubMed  CAS  Google Scholar 

  18. Sergeeva EM et al (2010) Evolutionary analysis of the CACTA DNA-transposon Caspar across wheat species using sequence comparison and in situ hybridization. Mol Gen Genet 284:11–23

    Article  CAS  Google Scholar 

  19. Wicker T et al (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63

    Article  PubMed  CAS  Google Scholar 

  20. Fedoroff NV (1989) The heritable activation of cryptic Suppressor-mutator elements by an active element. Genetics 121:591–608

    PubMed  CAS  Google Scholar 

  21. McClintock B (1971) The contribution of one component of a control system to versatility of gene expression. Carnegie Inst Wash Yr Bk 70:5–17

    Google Scholar 

  22. Fedoroff N, Schlappi M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. Bioessays 17:291–297

    Article  PubMed  CAS  Google Scholar 

  23. Fedoroff N (1989) Maize transposable elements. In: Howe M, Berg D (eds) Mobile DNA. American Society for Microbiology, Washington, pp 375–411

    Google Scholar 

  24. McClintock B (1953) Mutation in maize. Carnegie Inst Wash Yr Bk 52:227–237

    Google Scholar 

  25. Schwarz-Sommer Z et al (1985) Sequence comparison of ‘states’ of a1-m1 suggest a model of Spm (En) action. EMBO J 4:2439–2443

    PubMed  CAS  Google Scholar 

  26. Schwarz-Sommer Z et al (1987) Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J 6:287–294

    PubMed  CAS  Google Scholar 

  27. McClintock B (1956) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58–74

    PubMed  Google Scholar 

  28. Raina R, Cook D, Fedoroff N (1993) Maize Spm transposable element has an enhancer-insensitive promoter. Proc Natl Acad Sci USA 90:6355–6359

    Article  PubMed  CAS  Google Scholar 

  29. Raina R, Fedoroff N (1995) The role of TnpA and TnpD in transposition of Spm. Maize Genet Coop Newsl 69:13–15

    Google Scholar 

  30. Raina R et al (1998) Concerted formation of macromolecular Suppressor-mutator transposition complexes. Proc Natl Acad Sci USA 95:8526–8531

    Article  PubMed  CAS  Google Scholar 

  31. McClintock B (1961) Further studies of the suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yr Bk 60:469–476

    Google Scholar 

  32. McClintock B (1962) Topographical relations between elements of control systems in maize. Carnegie Inst Wash Yr Bk 61:448–461

    Google Scholar 

  33. Masson P, Strem M, Fedoroff N (1991) The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3:73–85

    PubMed  CAS  Google Scholar 

  34. Masson P et al (1989) Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58:755–765

    Article  PubMed  CAS  Google Scholar 

  35. Masson P, Toohey K, Fedoroff N (1988) Excision of Spm in tobacco. Maize Genet Coop Newsl 62:26–27

    Google Scholar 

  36. Yuan YW, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108:7884–7889

    Article  PubMed  CAS  Google Scholar 

  37. Tian P-F (2006) Progress in plant CACTA elements. Yi Chuan Xue Bao 33:765–774

    PubMed  CAS  Google Scholar 

  38. Gierl A, Lutticke S, Saedler H (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J 7:4045–4053

    PubMed  CAS  Google Scholar 

  39. Schlappi M, Raina R, Fedoroff N (1994) Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77:427–437

    Article  PubMed  CAS  Google Scholar 

  40. McClintock B (1963) Further studies of gene-control systems in maize. Carnegie Inst Wash Yr Bk 62:486–493

    Google Scholar 

  41. McClintock B (1955) Controlled mutation in maize. Carnegie Inst Wash Yr Bk 54:245–255

    Google Scholar 

  42. Hickman AB, Chandler M, Dyda F (2010) Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50–69

    Article  PubMed  Google Scholar 

  43. McClintock B (1957) Genetic and cytological studies of maize. Carnegie Inst Wash Yr Bk 56:393–401

    Google Scholar 

  44. McClintock B (1958) The suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yr Bk 57:415–429

    Google Scholar 

  45. Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–889

    PubMed  CAS  Google Scholar 

  46. Brink RA (1956) A regularly reversible change in determinative action at the R locus in maize. Genetics 41:636

    Google Scholar 

  47. Brink RA (1958) Paramutation at the R locus in maize. Cold Spring Harb Sym 23:379–391

    Article  CAS  Google Scholar 

  48. Lyon M (1961) Gene action in the X-chromosome of the mouse. Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  49. Lyon MF (1971) Possible mechanisms of X chromosome inactivation. Nat New Biol 232:229–232

    Article  PubMed  CAS  Google Scholar 

  50. Lyon MF (1993) Epigenetic inheritance in mammals. Trends Genet 9:123–128

    Article  PubMed  CAS  Google Scholar 

  51. McClintock B (1959) Genetic and cytological studies of maize. Carnegie Inst Wash Yr Bk 58:452–456

    Google Scholar 

  52. Banks JA, Masson P, Fedoroff N (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2:1364–1380

    Article  PubMed  CAS  Google Scholar 

  53. Meyer P (2011) DNA methylation systems and targets in plants. FEBS Lett 585:2008–2015

    Article  PubMed  CAS  Google Scholar 

  54. Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155

    Article  PubMed  CAS  Google Scholar 

  55. Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147

    Article  PubMed  CAS  Google Scholar 

  56. Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12:483–492

    Article  PubMed  CAS  Google Scholar 

  57. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  PubMed  CAS  Google Scholar 

  58. Bourc'his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622

    Article  PubMed  Google Scholar 

  59. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  PubMed  CAS  Google Scholar 

  60. He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435

    Article  PubMed  CAS  Google Scholar 

  61. Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  PubMed  CAS  Google Scholar 

  62. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585:1600–1616

    Article  PubMed  CAS  Google Scholar 

  63. Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol 15:251–258

    Article  PubMed  CAS  Google Scholar 

  64. Johnson MA, Bender J (2009) Reprogramming the epigenome during germline and seed development. Genome Biol 10:232

    Article  PubMed  Google Scholar 

  65. La H et al (2011) A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc Natl Acad Sci USA 108:15498–15503

    Article  PubMed  CAS  Google Scholar 

  66. Zheng X et al (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    Article  PubMed  CAS  Google Scholar 

  67. Banks JA, Fedoroff N (1989) Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Dev Genet 10:425–437

    Article  CAS  Google Scholar 

  68. Fedoroff NV, Banks JA (1988) Is the Suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics 120:559–577

    PubMed  CAS  Google Scholar 

  69. Schlappi M, Smith D, Fedoroff N (1993) TnpA trans-activates methylated maize Suppressor-mutator transposable elements in transgenic tobacco. Genetics 133:1009–1021

    PubMed  CAS  Google Scholar 

  70. Cui H, Fedoroff NV (2002) Inducible DNA demethylation mediated by the maize Suppressor-mutator transposon-encoded TnpA protein. Plant Cell 14:2883–2899

    Article  PubMed  CAS  Google Scholar 

  71. McClintock B (1964) Aspects of gene regulation in maize. Carnegie Inst Wash Yr Bk 63:592–602

    Google Scholar 

  72. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Fedoroff, N.V. (2013). Molecular Genetics and Epigenetics of CACTA Elements. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics