Advertisement

Antisense Effects of PNAs in Bacteria

  • Shan Goh
  • Jem Stach
  • Liam Good
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1050)

Abstract

Antisense peptide nucleic acid (PNA) can be used to control bacterial gene expression. PNAs are designed to target sequences within messenger RNA and knock-down gene expression. PNAs targeted to the translation initiation region of mRNA are particularly effective and result in mRNA degradation and reduced protein expression from the targeted gene. The antisense effects can be sufficient to alter phenotypes and even kill bacteria. PNAs provide useful tools for the study of bacterial gene function, and with improvements in cell uptake antisense PNAs may find applications as antimicrobial agents. This chapter details methods for designing antisense PNAs and testing their activities in bacteria, including suggestions for control experiments.

Key words

Peptide nucleic acid (PNA) DNA analogue Solid-phase peptide synthesis (SPPS) Metal complexes Click chemistry 

References

  1. 1.
    Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44:167–188PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Good L, Nielsen PE (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16(4):355–358PubMedCrossRefGoogle Scholar
  3. 3.
    Good L, Nielsen PE (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc Natl Acad Sci U S A 95(5):2073–2076PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Harth G, Horwitz MA, Tabatadze D, Zamecnik PC (2002) Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: proof of principle by using antisense technology. Proc Natl Acad Sci U S A 99(24):15614–15619PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    White DG, Maneewannakul K, von Hofe E, Zillman M, Eisenberg W, Field AK, Levy SB (1997) Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. Antimicrob Agents Chemother 41(12):2699–2704PubMedCentralPubMedGoogle Scholar
  6. 6.
    Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388PubMedCrossRefGoogle Scholar
  7. 7.
    Eriksson M, Nielsen PE, Good L (2002) Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J Biol Chem 277(9):7144PubMedCrossRefGoogle Scholar
  8. 8.
    Nekhotiaeva N, Awasthi SK, Nielsen PE, GOOD L (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10(4):652–659PubMedCrossRefGoogle Scholar
  9. 9.
    Kulyté A, Nekhotiaeva N, Awasthi SK, GOOD L (2005) Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 9(2):101–109PubMedCrossRefGoogle Scholar
  10. 10.
    Dryselius R, Aswasti SK, Rajarao GK, Nielsen PE, GOOD L (2003) The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides 13(6):427–433PubMedCrossRefGoogle Scholar
  11. 11.
    Good L (2003) Translation repression by antisense sequences. Cell Mol Life Sci 60(5):854–861PubMedGoogle Scholar
  12. 12.
    Goh S, Boberek JM, Nakashima N, Stach J, Good L (2009) Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One 4(6):e6061PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 19(4):360–364PubMedCrossRefGoogle Scholar
  14. 14.
    Dryselius R, Nikravesh A, Kulyté A, Goh S, GOOD L (2006) Variable coordination of cotranscribed genes in Escherichia coli following antisense repression. BMC Microbiol 6(1):97PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622PubMedCrossRefGoogle Scholar
  16. 16.
    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  18. 18.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L (2006) Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 34(20):5915–5922PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hatamoto M, Nakai K, Ohashi A, Imachi H (2009) Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl Microbiol Biotechnol 84(6):1161–1168PubMedCrossRefGoogle Scholar
  21. 21.
    Gruegelsiepe H, Brandt O, Hartmann RK (2006) Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J Biol Chem 281(41):30613–30620PubMedCrossRefGoogle Scholar
  22. 22.
    Bai H, Zhou Y, Hou Z, Xue X, Meng J, Luo X (2011) Targeting bacterial RNA polymerase: promises for future antisense antibiotics development. Infect Disord Drug Targets 11(2):175–187PubMedCrossRefGoogle Scholar
  23. 23.
    Jeon B, Zhang Q (2009) Sensitization of Campylobacter jejuni to fluoroquinolone and macrolide antibiotics by antisense inhibition of the CmeABC multidrug efflux transporter. J Antimicrob Chemother 63(5):946–948PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kurupati P, Tan KSW, Kumarasinghe G, Poh CL (2007) Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta-lactamase-producing Klebsiella pneumoniae strain. Antimicrob Agents Chemother 51(3):805–811PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dryselius R, Nekhotiaeva N, Good L (2005) Antimicrobial synergy between mRNA-and protein-level inhibitors. Br Soc Antimicrob ChemotherGoogle Scholar
  26. 26.
    Boberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5(10):e13745PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Prescott AM, Fricker CR (1999) Use of PNA oligonucleotides for the in situ detection of Escherichia coli in water. Mol Cell Probes 13(4):261–268PubMedCrossRefGoogle Scholar
  28. 28.
    Gião MS, Wilks SA, Azevedo NF, Vieira MJ, Keevil CW (2009) Comparison between standard culture and peptide nucleic acid 16S rRNA hybridization quantification to study the influence of physico-chemical parameters on Legionella pneumophila survival in drinking water biofilms. Biofouling 25(4):343–351PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Shan Goh
    • 1
  • Jem Stach
    • 2
  • Liam Good
    • 1
  1. 1.Department of Pathology and Infectious DiseasesRoyal Veterinary College, University of LondonLondonUK
  2. 2.Department of BiologyNewcastly UniversityNewcastleUK

Personalised recommendations