Skip to main content

Peptide Nucleic Acid-Mediated Recombination for Targeted Genomic Repair and Modification

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1050))

Abstract

The ability to directly manipulate the human genome to correct a disease-related mutation, introduce a sequence change that would lead to site-specific gene knockout, or increase gene expression is a very powerful tool with tremendous clinical value. Triplex formation by synthetic DNA-binding molecules such as peptide nucleic acids (PNAs) has been studied for over 20 years and much of the work in the last 10 years has shown its great promise in its use to direct site-specific gene modification for the use in gene therapy. In this chapter, detailed protocols are described for the design and use of triplex-forming PNAs to bind and mediate gene modification at specific chromosomal targets. Target site identification, PNA and donor oligonucleotide design, in vitro characterization of binding, optimization with reporter systems, as well as various methods to assess gene modification and isolate modified cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  2. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  PubMed  CAS  Google Scholar 

  3. Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sonnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  PubMed  CAS  Google Scholar 

  4. Faruqi AF, Egholm M, Glazer PM (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci U S A 95:1398–1403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Vasquez KM, Glazer PM (2002) Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys 35:89–107

    Article  PubMed  CAS  Google Scholar 

  6. Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Larsen HJ, Nielsen PE (1996) Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucleic Acids Res 24:458–463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Boulme F, Freund F, Gryaznov S, Nielsen PE, Tarrago-Litvak L, Litvak S (2000) Study of HIV-2 primer-template initiation complex using antisense oligonucleotides. Eur J Biochem 267:2803–2811

    Article  PubMed  CAS  Google Scholar 

  9. Boulme F, Freund F, Moreau S, Nielsen PE, Gryaznov S, Toulme JJ, Litvak S (1998) Modified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription. Nucleic Acids Res 26:5492–5500

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Lee R, Kaushik N, Modak MJ, Vinayak R, Pandey VN (1998) Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry 37:900–910

    Article  PubMed  CAS  Google Scholar 

  11. Koppelhus U, Zachar V, Nielsen PE, Liu X, Eugen-Olsen J, Ebbesen P (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 25:2167–2173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060

    PubMed  CAS  Google Scholar 

  13. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42:13987–13995

    Article  PubMed  CAS  Google Scholar 

  14. Kaihatsu K, Shah RH, Zhao X, Corey DR (2003) Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates. Biochemistry 42:13996–14003

    Article  PubMed  CAS  Google Scholar 

  15. Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM (1999) Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 274:11541–11548

    Article  PubMed  CAS  Google Scholar 

  16. Knauert MP, Kalish JM, Hegan DC, Glazer PM (2006) Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 14:392–400

    Article  PubMed  CAS  Google Scholar 

  17. Majumdar A, Puri N, Cuenoud B, Natt F, Martin P, Khorlin A, Dyatkina N, George AJ, Miller PS, Seidman MM (2003) Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 278:11072–11077

    Article  PubMed  CAS  Google Scholar 

  18. Parekh-Olmedo H, Engstrom JU, Kmiec EB (2003) The effect of hydroxyurea and trichostatin A on targeted nucleotide exchange in yeast and mammalian cells. Ann N Y Acad Sci 1002:43–55

    Article  PubMed  CAS  Google Scholar 

  19. Chin JY, Kuan JY, Lonkar PS, Krause DS, Seidman MM, Peterson KR, Nielsen PE, Kole R, Glazer PM (2008) Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 105:13514–13519

    Article  PubMed Central  PubMed  Google Scholar 

  20. Schleifman EB, Bindra R, Leif J, Del Campo J, Rogers FA, Uchil P, Kutsch O, Shultz LD, Kumar P, Greiner DL, Glazer PM (2011) Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18:1189–1198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Wang G, Seidman MM, Glazer PM (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805

    Article  PubMed  CAS  Google Scholar 

  22. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20:990–1000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM (2002) Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 99:5848–5853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM (2005) Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 33:2993–3001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Wang G, Chen Z, Zhang S, Wilson GL, Jing K (2001) Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res 29:1801–1807

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wang G, Vasquez KM (2004) Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci U S A 101:13448–13453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Bacolla A, Jaworski A, Connors TD, Wells RD (2001) Pkd1 unusual DNA conformations are recognized by nucleotide excision repair. J Biol Chem 276:18597–18604

    Article  PubMed  CAS  Google Scholar 

  28. Rogers FA, Manoharan M, Rabinovitch P, Ward DC, Glazer PM (2004) Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res 32:6595–6604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Branden LJ, Mohamed AJ, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787

    Article  PubMed  CAS  Google Scholar 

  30. Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10:9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM (2010) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34(+) human hematopoietic progenitors. Mol Ther 19(1):172–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Audouy S, Molema G, de Leij L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2:465–476

    Article  PubMed  CAS  Google Scholar 

  33. Blum JS, Saltzman WM (2008) High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 129:66–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 8:526–533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5(4):410–418

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    Article  PubMed  Google Scholar 

  37. Visscher GE, Robison RL, Maulding HV, Fong JW, Pearson JE, Argentieri GJ (1985) Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res 19:349–365

    Article  PubMed  CAS  Google Scholar 

  38. Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29:3965–3974

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 12:51–63

    Article  PubMed  CAS  Google Scholar 

  40. Orou A, Fechner B, Utermann G, Menzel HJ (1995) Allele-specific competitive blocker PCR: a one-step method with applicability to pool screening. Hum Mutat 6:163–169

    Article  PubMed  CAS  Google Scholar 

  41. Parsons BL, McKinzie PB, Heflich RH (2005) Allele-specific competitive blocker-PCR detection of rare base substitution. Methods Mol Biol 291:235–245

    PubMed  CAS  Google Scholar 

  42. Schleifman EB, Chin JY, Glazer PM (2007) Gene targeting with triplex forming oligonucleotides. 435:

    Google Scholar 

  43. Knauert MP, Lloyd JA, Rogers FA, Datta HJ, Bennett ML, Weeks DL, Glazer PM (2005) Distance and affinity dependence of triplex-induced recombination. Biochemistry 44:3856–3864

    Article  PubMed  CAS  Google Scholar 

  44. Hansen GI, Bentin T, Larsen HJ, Nielsen PE (2001) Structural isomers of bis-PNA bound to a target in duplex DNA. J Mol Biol 307:67–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge members of the Glazer Lab for helpful discussions. E.B.S. is supported by an NIH training grant to the Genetics Department. This work was supported by a grant from the NIH (R01HL082655) to P.M.G.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Schleifman, E.B., Glazer, P.M. (2014). Peptide Nucleic Acid-Mediated Recombination for Targeted Genomic Repair and Modification. In: Nielsen, P., Appella, D. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 1050. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-553-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-553-8_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-552-1

  • Online ISBN: 978-1-62703-553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics