Peptide Nucleic Acid-Mediated Recombination for Targeted Genomic Repair and Modification

  • Erica B. Schleifman
  • Peter M. Glazer
Part of the Methods in Molecular Biology book series (MIMB, volume 1050)


The ability to directly manipulate the human genome to correct a disease-related mutation, introduce a sequence change that would lead to site-specific gene knockout, or increase gene expression is a very powerful tool with tremendous clinical value. Triplex formation by synthetic DNA-binding molecules such as peptide nucleic acids (PNAs) has been studied for over 20 years and much of the work in the last 10 years has shown its great promise in its use to direct site-specific gene modification for the use in gene therapy. In this chapter, detailed protocols are described for the design and use of triplex-forming PNAs to bind and mediate gene modification at specific chromosomal targets. Target site identification, PNA and donor oligonucleotide design, in vitro characterization of binding, optimization with reporter systems, as well as various methods to assess gene modification and isolate modified cells are described.

Key words

Triplex Peptide nucleic acid (PNA) Tail-clamp PNA (tcPNA) Homologous recombination Gene therapy Gel shift Allele-specific PCR Electroporation 



We gratefully acknowledge members of the Glazer Lab for helpful discussions. E.B.S. is supported by an NIH training grant to the Genetics Department. This work was supported by a grant from the NIH (R01HL082655) to P.M.G.


  1. 1.
    Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024CrossRefGoogle Scholar
  2. 2.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500PubMedCrossRefGoogle Scholar
  3. 3.
    Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sonnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313PubMedCrossRefGoogle Scholar
  4. 4.
    Faruqi AF, Egholm M, Glazer PM (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci U S A 95:1398–1403PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Vasquez KM, Glazer PM (2002) Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys 35:89–107PubMedCrossRefGoogle Scholar
  6. 6.
    Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–222PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Larsen HJ, Nielsen PE (1996) Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequence-specific suicide transcription. Nucleic Acids Res 24:458–463PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Boulme F, Freund F, Gryaznov S, Nielsen PE, Tarrago-Litvak L, Litvak S (2000) Study of HIV-2 primer-template initiation complex using antisense oligonucleotides. Eur J Biochem 267:2803–2811PubMedCrossRefGoogle Scholar
  9. 9.
    Boulme F, Freund F, Moreau S, Nielsen PE, Gryaznov S, Toulme JJ, Litvak S (1998) Modified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription. Nucleic Acids Res 26:5492–5500PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lee R, Kaushik N, Modak MJ, Vinayak R, Pandey VN (1998) Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitro HIV-1 reverse transcription. Biochemistry 37:900–910PubMedCrossRefGoogle Scholar
  11. 11.
    Koppelhus U, Zachar V, Nielsen PE, Liu X, Eugen-Olsen J, Ebbesen P (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 25:2167–2173PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060PubMedGoogle Scholar
  13. 13.
    Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42:13987–13995PubMedCrossRefGoogle Scholar
  14. 14.
    Kaihatsu K, Shah RH, Zhao X, Corey DR (2003) Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates. Biochemistry 42:13996–14003PubMedCrossRefGoogle Scholar
  15. 15.
    Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM (1999) Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 274:11541–11548PubMedCrossRefGoogle Scholar
  16. 16.
    Knauert MP, Kalish JM, Hegan DC, Glazer PM (2006) Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 14:392–400PubMedCrossRefGoogle Scholar
  17. 17.
    Majumdar A, Puri N, Cuenoud B, Natt F, Martin P, Khorlin A, Dyatkina N, George AJ, Miller PS, Seidman MM (2003) Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 278:11072–11077PubMedCrossRefGoogle Scholar
  18. 18.
    Parekh-Olmedo H, Engstrom JU, Kmiec EB (2003) The effect of hydroxyurea and trichostatin A on targeted nucleotide exchange in yeast and mammalian cells. Ann N Y Acad Sci 1002:43–55PubMedCrossRefGoogle Scholar
  19. 19.
    Chin JY, Kuan JY, Lonkar PS, Krause DS, Seidman MM, Peterson KR, Nielsen PE, Kole R, Glazer PM (2008) Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 105:13514–13519PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schleifman EB, Bindra R, Leif J, Del Campo J, Rogers FA, Uchil P, Kutsch O, Shultz LD, Kumar P, Greiner DL, Glazer PM (2011) Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18:1189–1198PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wang G, Seidman MM, Glazer PM (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805PubMedCrossRefGoogle Scholar
  22. 22.
    Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20:990–1000PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM (2002) Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 99:5848–5853PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Thoma BS, Wakasugi M, Christensen J, Reddy MC, Vasquez KM (2005) Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Nucleic Acids Res 33:2993–3001PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wang G, Chen Z, Zhang S, Wilson GL, Jing K (2001) Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts. Nucleic Acids Res 29:1801–1807PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wang G, Vasquez KM (2004) Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci U S A 101:13448–13453PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bacolla A, Jaworski A, Connors TD, Wells RD (2001) Pkd1 unusual DNA conformations are recognized by nucleotide excision repair. J Biol Chem 276:18597–18604PubMedCrossRefGoogle Scholar
  28. 28.
    Rogers FA, Manoharan M, Rabinovitch P, Ward DC, Glazer PM (2004) Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Res 32:6595–6604PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Branden LJ, Mohamed AJ, Smith CI (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 17:784–787PubMedCrossRefGoogle Scholar
  30. 30.
    Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10:9PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM (2010) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34(+) human hematopoietic progenitors. Mol Ther 19(1):172–180PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Audouy S, Molema G, de Leij L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2:465–476PubMedCrossRefGoogle Scholar
  33. 33.
    Blum JS, Saltzman WM (2008) High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 129:66–72PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 8:526–533PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, Fahmy TM (2009) PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 5(4):410–418PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24PubMedCrossRefGoogle Scholar
  37. 37.
    Visscher GE, Robison RL, Maulding HV, Fong JW, Pearson JE, Argentieri GJ (1985) Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res 19:349–365PubMedCrossRefGoogle Scholar
  38. 38.
    Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29:3965–3974PubMedCentralPubMedGoogle Scholar
  39. 39.
    Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 12:51–63PubMedCrossRefGoogle Scholar
  40. 40.
    Orou A, Fechner B, Utermann G, Menzel HJ (1995) Allele-specific competitive blocker PCR: a one-step method with applicability to pool screening. Hum Mutat 6:163–169PubMedCrossRefGoogle Scholar
  41. 41.
    Parsons BL, McKinzie PB, Heflich RH (2005) Allele-specific competitive blocker-PCR detection of rare base substitution. Methods Mol Biol 291:235–245PubMedGoogle Scholar
  42. 42.
    Schleifman EB, Chin JY, Glazer PM (2007) Gene targeting with triplex forming oligonucleotides. 435:Google Scholar
  43. 43.
    Knauert MP, Lloyd JA, Rogers FA, Datta HJ, Bennett ML, Weeks DL, Glazer PM (2005) Distance and affinity dependence of triplex-induced recombination. Biochemistry 44:3856–3864PubMedCrossRefGoogle Scholar
  44. 44.
    Hansen GI, Bentin T, Larsen HJ, Nielsen PE (2001) Structural isomers of bis-PNA bound to a target in duplex DNA. J Mol Biol 307:67–74PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Erica B. Schleifman
    • 1
  • Peter M. Glazer
    • 1
  1. 1.Department of GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations