Rapid miRNA Imaging in Cells Using Fluorogenic Templated Staudinger Reaction Between PNA-Based Probes

  • Katarzyna Gorska
  • Nicolas Winssinger
Part of the Methods in Molecular Biology book series (MIMB, volume 1050)


Reactions templated by a specific nucleic acid sequence have emerged as an attractive strategy for nucleic acid sensing. The Staudinger reaction using an azide-quenched fluorophore and a phosphine is particularly well suited by virtue of its bioorthogonality and biocompatibility. The reaction is promoted by a complementary nucleic acid that aligns the phosphine with the azide-quenched fluorophore. Cellular RNAs can catalyze the Staudinger reaction and signal amplification can be achieved through multiple turnover of the template. Peptide nucleic acids (PNA) provide a convenient platform for the preparation of specific probes as they combine desirable hybridization properties, robust synthesis, ease of fluorophore conjugation, and high biochemical stability. Herein, we describe protocols for fast fluorescent detection of miRNAs in human cells with PNA-based probes via reductive unquenching of bis-azidorhodamine by trialkylphosphine.

Key words

Peptide nucleic acid (PNA) Imaging miRNA Templated reaction Pro-fluorophore Rhodamine Staudinger reaction 



The authors thank the granting agencies which have supported this work (European Research Council-ERC 201749, The Institut Universitaire de France, Boehringer Ingelheim Fonds). The authors thank their numerous collaborators in the various aspects of this work.


  1. 1.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  2. 2.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169PubMedCrossRefGoogle Scholar
  5. 5.
    Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW (2007) miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol 26:293–300PubMedCrossRefGoogle Scholar
  6. 6.
    Pena JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A et al (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6:139–141PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Politz JC, Zhang F, Pederson T (2006) MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci U S A 103:18957–18962PubMedCrossRefGoogle Scholar
  8. 8.
    Lu J, Tsourkas A (2011) Quantification of miRNA abundance in single cells using locked nucleic acid-FISH and enzyme-labeled fluorescence. Methods Mol Biol 680:77–88PubMedCrossRefGoogle Scholar
  9. 9.
    Silverman AP, Kool ET (2006) Detecting RNA and DNA with templated chemical reactions. Chem Rev 106:3775–3789PubMedCrossRefGoogle Scholar
  10. 10.
    Grossmann TN, Strohbach A, Seitz O (2008) Achieving turnover in DNA-templated reactions. Chembiochem 9:2185–2192PubMedCrossRefGoogle Scholar
  11. 11.
    Franzini RM, Kool ET (2009) Efficient nucleic acid detection by templated reductive quencher release. J Am Chem Soc 131:16021–16023PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Franzini RM, Kool ET (2011) Two successive reactions on a DNA template: a strategy for improving background fluorescence and specificity in nucleic acid detection. Chemistry 17:2168–2175PubMedCrossRefGoogle Scholar
  13. 13.
    Sando S, Kool ET (2002) Imaging of RNA in bacteria with self-ligating quenched probes. J Am Chem Soc 124:9686–9687PubMedCrossRefGoogle Scholar
  14. 14.
    Silverman AP, Baron EJ, Kool ET (2006) RNA-templated chemistry in cells: discrimination of Escherichia, Shigella and Salmonella bacterial strains with a new two-color FRET strategy. Chembiochem 7:1890–1894PubMedCrossRefGoogle Scholar
  15. 15.
    Silverman AP, Kool ET (2005) Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA. Nucleic Acids Res 33:4978–4986PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Abe H, Kool ET (2006) Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc Natl Acad Sci U S A 103:263–268PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pianowski Z, Gorska K, Oswald L, Merten CA, Winssinger N (2009) Imaging of mRNA in live cells using nucleic acid-templated reduction of azidorhodamine probes. J Am Chem Soc 131:6492–6497PubMedCrossRefGoogle Scholar
  18. 18.
    Furukawa K, Abe H, Hibino K, Sako Y, Tsuneda S, Ito Y (2009) Reduction-triggered fluorescent amplification probe for the detection of endogenous RNAs in living human cells. Bioconjug Chem 20:1026–1036PubMedCrossRefGoogle Scholar
  19. 19.
    Abe H, Wang J, Furukawa K, Oki K, Uda M, Tsuneda S et al (2008) A reduction-triggered fluorescence probe for sensing nucleic acids. Bioconjug Chem 19:1219–1226PubMedCrossRefGoogle Scholar
  20. 20.
    Franzini RM, Kool ET (2008) 7-Azidomethoxy-coumarins as profluorophores for templated nucleic acid detection. Chembiochem 9:2981–2988PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zhou P, Wang M, Du L, Fisher GW, Waggoner A, Ly DH (2003) Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA). J Am Chem Soc 125:6878–6879PubMedCrossRefGoogle Scholar
  22. 22.
    Gorska K, Keklikoglou I, Tschulena I, Winssingera N (2011) Rapid fluorescence imaging of miRNAs in human cells using templated Staudinger reaction. Chem Sci 2:1969–1975CrossRefGoogle Scholar
  23. 23.
    Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568PubMedCrossRefGoogle Scholar
  24. 24.
    Nielsen PE (2004) PNA technology. Mol Biotechnol 26:233–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Katarzyna Gorska
    • 1
  • Nicolas Winssinger
    • 1
  1. 1.Laboratoire de Chemie Organique et BioorganiqueInstitut de Science et d’Ingénierie Supramoléculaires, Université Louis PasteurStrasbourgFrance

Personalised recommendations