• Arunava Manna
  • Srinivas Rapireddy
  • Raman Bahal
  • Danith H. Ly
Part of the Methods in Molecular Biology book series (MIMB, volume 1050)


Peptide nucleic acids (PNAs) are attractive, as compared to other classes of oligonucleotides that have been developed to date, in that they are relatively easy to synthesize and modify, hybridize to DNA and RNA with high affinity and sequence selectivity, and are resistant to enzymatic degradation by proteases and nucleases; however, the downside is that they are only moderately soluble in aqueous solution. Herein we describe the protocols for synthesizing the second-generation γPNAs, both the monomers and oligomers, containing MiniPEG side chain with considerable improvements in water solubility, biocompatibility, and hybridization properties.

Key words

Chiral PNA Backbone modification Conformational preorganization Water solubility 


  1. 1.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500PubMedCrossRefGoogle Scholar
  2. 2.
    Egholm M, Buchardt O et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568PubMedCrossRefGoogle Scholar
  3. 3.
    Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630CrossRefGoogle Scholar
  4. 4.
    Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by "tail-clamp" peptide nucleic acid. Biochemistry 42:13987–13995PubMedCrossRefGoogle Scholar
  5. 5.
    Demidov VV et al (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313PubMedCrossRefGoogle Scholar
  6. 6.
    Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060PubMedGoogle Scholar
  7. 7.
    Nielsen PE (2004) PNA technology. Mol Biotechnol 26:233–248PubMedCrossRefGoogle Scholar
  8. 8.
    Dueholm KL et al (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine, and guanine and their oligomerization. J Org Chem 59:5767–5773CrossRefGoogle Scholar
  9. 9.
    Thomson SA et al (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedron 51:6179–6194CrossRefGoogle Scholar
  10. 10.
    Beck F, Nielsen PE (2003) Artificial DNA: methods and applications. CRC Press, Boca Raton, FL, pp 91–114Google Scholar
  11. 11.
    Braasch DA, Corey DR (2001) Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. Methods 23:97–107PubMedCrossRefGoogle Scholar
  12. 12.
    Tackett AJ, Corey DR, Raney KD (2002) Non-Watson-Crick interactions between PNA and DNA inhibit the ATPase activity of bacteriophage T4 Dda helicase. Nucleic Acids Res 30:950–957PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Masuko M et al (2003) Hybridization of an immobilized PNA probe with its complementary oligodeoxyribonucleotide on the surface of silica glass. Nucleic Acids Res (Suppl):145–146Google Scholar
  14. 14.
    Cattani-Scholz A et al (2009) PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors. Biomacromolecules 10:489–496PubMedCrossRefGoogle Scholar
  15. 15.
    Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogues with an acbiral peptide backbone. J Am Chem Soc 114:1895–1897CrossRefGoogle Scholar
  16. 16.
    Haaima G, Lohse A, Buchardt O, Nielsen PE (1996) Peptide nucleic acids (PNAs) containing thymine monomers derived from chiral amino acids: hybridization and solubility properties of D-lysine PNA. Angew Chem Int Ed Engl 35:1939–1941CrossRefGoogle Scholar
  17. 17.
    Sforza S, Tedeschi T, Corradini R, Marchelli R (2007) Induction of helical handedness and dna binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur J Org Chem 2007:5879–5885CrossRefGoogle Scholar
  18. 18.
    Boyarskaya NP et al (2006) Synthesis of two new thymine-containing negatively charged PNA monomers. Dokl Chem (Transl Dokl Akad Nauk) 408:57–60Google Scholar
  19. 19.
    Gildea BD et al (1998) PNA solubility enhancers. Tetrahedron Lett 39:7255–7258CrossRefGoogle Scholar
  20. 20.
    Hudson RHE, Liu Y, Wojciechowski F (2007) Hydrophilic modifications in peptide nucleic acid synthesis and properties of PNA possessing 5-hydroxymethyluracil and 5-hydroxymethylcytosine. Can J Chem 85:302–312CrossRefGoogle Scholar
  21. 21.
    Peyman A et al (1996) Phosphonic ester nucleic acids (PHONAs): oligodeoxyribonucleotide analog with an achiral phosphonic acid ester backbone. Angew Chem Int Ed Engl 35:2636–2638CrossRefGoogle Scholar
  22. 22.
    Efimov VA et al (1998) Synthesis and evaluation of some properties of chimeric oligomers containing PNA and phosphono-PNA residues. Nucleic Acids Res 26:566–575PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Bonora GM et al (2007) PNA conjugated to high-molecular weight poly(ethylene glycol): synthesis and properties nucleosides, nucleotides. Nucleic Acids 26:661–664CrossRefGoogle Scholar
  24. 24.
    Petersen KH, Jensen DK, Egholm M, Nielsen PE, Buchardt O (1995) A PNA-DNA linker synthesis of N-[(4,4′-dimethoxytrityloxy)ethyl]-N-(thymin-1-ylacetyl)glycine. Bioorg Med Chem Lett 5:1119–1124CrossRefGoogle Scholar
  25. 25.
    Bergmann F, Bannwarth W, Tam S (1995) Solid phase synthesis of directly linked PNA-DNA-hybrids. Tetrahedron Lett 36:6823–6826CrossRefGoogle Scholar
  26. 26.
    Uhlmann E, Will DW, Breipohl G, Langner D, Ryte A (1996) Synthesis and properties of PNA/DNA chimeras. Angew Chem Int Ed Engl 35:2632–2635CrossRefGoogle Scholar
  27. 27.
    Finn PJ, Gibson NJ, Fallon R, Hamilton A, Brown T (1996) Synthesis and properties of DNA-PNA chimeric oligomers. Nucleic Acids Res 24:3357–3363PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Vander Laan AC et al (1997) A convenient automated solid-phase synthesis of PNA-(5′)-DNA-(3′)-PNA chimera. Tetrahedron Lett 38:2249–2252CrossRefGoogle Scholar
  29. 29.
    Kuwahara M, Arimitsu M, Sisido M (1999) Novel peptide nucleic acid that shows high sequence specificity and All-or-none-type hybridization with the complementary DNA. J Am Chem Soc 121:256–257CrossRefGoogle Scholar
  30. 30.
    Sahu B et al (2011) Synthesis and characterization of conformationally preorganized,(R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76:5614–5627PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dragulescu-Andrasi A et al (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou P, Dragulescu-Andrasi A et al (2006) Synthesis of cell-permeable peptide nucleic acid monomers and oligomers, and characterization of their hybridization and uptake properties. Bioorg Med Chem Lett 16:4931–4935PubMedCrossRefGoogle Scholar
  33. 33.
    Rapireddy S, He G, Roy S, Armitage BA, Ly DH (2007) Strand invasion of mixed-sequence B-DNA by acridine-linked, γ-peptide nucleic acid (γ-PNA). J Am Chem Soc 129:15596–15600PubMedCrossRefGoogle Scholar
  34. 34.
    Chenna V et al (2008) A simple cytosine to G-clamp nucleobase substitution enables chiral-PNAs to invade mixed-sequence double-helical B-form DNA. ChemBioChem 9:2388–2391PubMedCrossRefGoogle Scholar
  35. 35.
    Sahu B et al (2009) Synthesis of conformationally preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs). J Org Chem 74:1509–1516PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Christensen et al (1995) Solid-phase synthesis of peptide nucleic acids. J Pept Sci 1:175–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Arunava Manna
    • 1
  • Srinivas Rapireddy
    • 1
  • Raman Bahal
    • 1
  • Danith H. Ly
    • 1
  1. 1.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations