Skip to main content

Microalgal Immobilization Methods

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

In this review, methods for the most common microalgal immobilization procedures are gathered and described. Passive (due to natural adherence of cells to surfaces) and active immobilization methods should be distinguished. Among active immobilization methods, calcium alginate entrapment is the most widely used method if living cells are intended to be immobilized, due to the chemical, optical, and mechanical characteristics of this substance. Immobilization in synthetic foams, immobilization in agar and carrageenan as well as immobilization in silica-based matrix or filters are also discussed and described. Finally, some considerations on the use of flocculation for microalgae are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  2. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  PubMed  CAS  Google Scholar 

  3. Robinson PK, Mak AL, Trevan MD (1986) Immobilized algae: a review. Process Biochem 122–126

    Google Scholar 

  4. Greene B, Bedell GW (1990) Algal gels or immobilized algae for metal recovery. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing bv, The Hage, pp 137–149

    Google Scholar 

  5. Maeda S, Sakaguchi T (1990) Accumulation and detoxification of toxic elements by algae. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing bv, The Hage

    Google Scholar 

  6. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  PubMed  CAS  Google Scholar 

  7. De-Bashan L, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  PubMed  CAS  Google Scholar 

  8. Carrilho ENVM, Nóbrega JA, Gilbert TR (2003) The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta 60:1131–1140

    Article  PubMed  CAS  Google Scholar 

  9. Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Energy 35:741–747

    Article  CAS  Google Scholar 

  10. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  11. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  PubMed  CAS  Google Scholar 

  12. Chader S, Mahmah B, Chetehouna K, Amrouche F, Abdeladim K (2011) Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell. Int J Hydrogen Energy 36:4089–4093

    Article  CAS  Google Scholar 

  13. Moreira dos Santos M, Moreno-Garrido I, Gonçalves F, Soares AMVM, Ribeiro R (2002) An in situ bioassay with microalgae for estuarine environments. Environ Toxicol Chem 21(3):567–574

    Article  Google Scholar 

  14. Moreira dos Santos M, Soares AMVM, Ribeiro R (2004) An in situ bioassay for freshwater environments with the microalga Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 59:164–173

    Article  CAS  Google Scholar 

  15. Moreno-Garrido I, Campana O, Lubián LM, Blasco J (2005) Calcium alginate immobilized marine microalgae: experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51:823–929

    Article  PubMed  CAS  Google Scholar 

  16. Lukavsky J (1988) Long-term preservation of algal strains by immobilization. Arch Protistenkd 135:65–68

    Article  Google Scholar 

  17. Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  18. Mallik N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  Google Scholar 

  19. Abdel Hameed MS, Ebrahim OH (2007) Biotechnological potential uses of immobilized algae. Int J Agricul Biol 9(1):183–192

    CAS  Google Scholar 

  20. Moreno-Garrido I (2008) Immobilized microalgae: current techniques and uses (review). Bioresour Technol 99:3949–3964

    Article  PubMed  CAS  Google Scholar 

  21. Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  PubMed  CAS  Google Scholar 

  22. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  23. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts. Biotechnol Adv 29:686–702

    Article  PubMed  CAS  Google Scholar 

  24. Archambault J, Volesky B, Kurz WGW (1990) Development of bioreactors for the culture of surface immobilized plant cells. Biotechnol Bioeng 35:702–711

    Article  PubMed  CAS  Google Scholar 

  25. Admiraal W, Blanck H, Buckert-de Jong M, Guasch H, Ivorra N, Lehmann V, Nyström BAH, Paulsson M, Sabater S (1999) Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Res 33(9):1989–1996

    Article  CAS  Google Scholar 

  26. Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge immobilized biomass of chlorella sorokiniana: characterization studies. J Hazard Mater B 108:85–94

    Article  CAS  Google Scholar 

  27. Liu YK, Seki M, Tanaka H, Furusaki S (1998) Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. J Ferment Bioeng 85(4):416–421

    Article  CAS  Google Scholar 

  28. Iqbal M, Edyvean RGJ (2004) Biosorption of lead, copper and zinc ions on loofa esponge immobilized biomass of Phanaerochaete chrysosporium. Minerals Eng 17:217–223

    Article  CAS  Google Scholar 

  29. Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M (2006) Empirical modeling of olive oil mill wastewater treatment using loota-immobilized Phanaerochaete crysosporium. Process Biochem 41:1148–1154

    Article  CAS  Google Scholar 

  30. Ogbonna JC, Tomiyama S, Tanaka H (1996) Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochem 31(8):737–744

    Article  CAS  Google Scholar 

  31. Saeed A, Iqbal M, Zafar SI (2009) Immobilization of trichoderma viride for enhanced methylene blue biosorption: batch and column studies. J Hazard Mater 168:406–415

    Article  PubMed  CAS  Google Scholar 

  32. Nagase H, Pattanasupong A, Sugimoto E, Tani K, Nasu M, Hirata K, Miyamoto K (2006) Effect of environmental factors on performance of immobilized consortium system for degradation of carbedazim and 2,4-dichlorophenoxyacetic acid in continuous culture. Biochem Eng J 29:163–168

    Article  CAS  Google Scholar 

  33. Nasreen A, Iqbal M, Zafar SI, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella Sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci 20:231–239

    Article  Google Scholar 

  34. Gosh M, Gaur JP (1998) Current velocity and the establishment of stream algal periphyton communities. Aquat Botany 60:1–10

    Article  Google Scholar 

  35. Nayar S, Goh BPL, Chou LM, Reddy S (2003) In situ microcosms to study the impact of heavy metals resuspended by dredging on periphyton in a tropical stuary. Aquat Toxicol 64:293–306

    Article  PubMed  CAS  Google Scholar 

  36. Nayar S, Goh BPL, Chou LM (2005) Settlement of marine periphytic algae in a tropical estuary. Estuarine Coastal Shelf Sci 64:241–248

    Article  Google Scholar 

  37. Danilov R, Ekelund NGA (2001) Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. J Microbiol Methods 45:167–170

    Article  PubMed  CAS  Google Scholar 

  38. Franke R, Franke C (1999) Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water. Chemosphere 39(15):2651–2659

    Article  PubMed  CAS  Google Scholar 

  39. Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained photoproduction by immobilized, sulphur deprived Chlamydomonas reindhartii cells. Int J Hydrogen Energy 31:569–667

    Article  CAS  Google Scholar 

  40. Tsygankov AA, Hirata Y, Miyake M, Asada Y, Miyake J (1994) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77(5):575–578

    Article  CAS  Google Scholar 

  41. Travieso L, Sánchez Hernández E, Weiland P (1995) Final treatment for cattle manure using immobilized microalgae. I. Study of the support media. Res ConservRecycling 13:167–175

    Google Scholar 

  42. Travieso L, Benítez F, Weiland P, Sánchez E, Dupeyrón R, Domínguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55:181–186

    Article  CAS  Google Scholar 

  43. Travieso L, Pellón A, Benítez F, Sánchez E, Borja R, O’Farrill NO, Weiland P (2002) BIOALGA reactor: preliminary studies for heavy metals removal. Biochem Eng J 12:87–91

    Article  CAS  Google Scholar 

  44. Yamaguchi T, Ishida M, Suzuki T (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem 34:167–171

    Article  CAS  Google Scholar 

  45. Suzuki T, Yamaguchi T, Ishida M (1998) Immobilization of Prototheca zopfii in calcium alginate vedas for the degradation of hydrocarbons. Process Biochem 33(5):541–546

    Article  CAS  Google Scholar 

  46. Alhakawati MS, Banks CJ (2004) Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. J Environ Manage 72:195–204

    Article  PubMed  CAS  Google Scholar 

  47. Blanco A, Sanz B, Llama MJ, Serra JL (1999) Biosorption of heavy metals to immobilized Phormidium laminosum biomass. J Biotechnol 69:227–240

    Article  CAS  Google Scholar 

  48. Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilizes in polimeric foams. Enzyme Microb Technol 17:200–205

    Article  CAS  Google Scholar 

  49. Hashim MA, Tan HN, Chu KH (2000) Immobilized marine algal biomass for multiple cycles of copper adsorption and desorption. Sep Purif Technol 19:39–42

    Article  CAS  Google Scholar 

  50. Jeon C, Park JY, Yoo YJ (2002) Novel immobilization of alginic acid for heavy metal removal. Biochem Eng J 11:159–166

    Article  CAS  Google Scholar 

  51. Chouteau C, Dzyadevych S, Chovelon JM, Durrieu C (2004) Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096

    Article  PubMed  CAS  Google Scholar 

  52. Chouteau C, Dzyadevych S, Durrieu C, Chovelon JM (2005) A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens Bioelectron 21:273–281

    Article  PubMed  CAS  Google Scholar 

  53. Babu PSR, Panda T (1991) Studies on improved techniques for immobilizing and stabilizing gpenicillin amidase associated with E. coli cells. Enzyme Microb Technol 13:676–682

    Article  PubMed  CAS  Google Scholar 

  54. Kubal BS, D’Souza SF (2004) Immobilization of catalase by entrapment of permeabilized yeast cells in hen egg white using glutaraldehyde. J Biochem Biophys Methods 59:61–64

    Article  PubMed  CAS  Google Scholar 

  55. Seki H, Suzuki A (2002) Adsorption of heavy metal ions to floc-type biosorbents. J Colloid Interface Sci 249:295–300

    Article  PubMed  CAS  Google Scholar 

  56. Burdin KS, Bird KT (1994) Heavy metal accumulation by carrageenan and agar producing algae. Botanica Marina 37:467–470

    Article  CAS  Google Scholar 

  57. Vílchez MJ, Vigara J, Garbayo I, Vílchez C (1997) Electron microscopic studies on immobilized growing Chlamydomonas reindhartii cells. Enzyme Microb Technol 21:45–47

    Article  Google Scholar 

  58. Aksu Z, Eğretli G, Kutsal T (1998) A comparative study of copper(II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochem 33(4):393–400

    Article  CAS  Google Scholar 

  59. Khattar JIS, Sarma TA, Singh DP (1999) Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor. Enzyme Microb Technol 25:564–568

    Article  CAS  Google Scholar 

  60. Schreiter PP-Y, Gillor O, Post A, Belkin S, Schmid R, Bachmann TT (2001) Monitoring of phosphorus bioavailability in water by an immobilized luminescent cyanobacterial reporter strain. Biosens Bioelectron 16:811–818

    Article  PubMed  CAS  Google Scholar 

  61. Cassidy MB, Lee H, Trevors JT (1997) Survival and activity of lac-lux marked Pseudomonas aeruginosa UG2Lr cells encapsulated in κ-carrageenan over four years at 4°C. J Microbiol Methods 30:167–170

    Article  CAS  Google Scholar 

  62. Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63:115–121

    Article  CAS  Google Scholar 

  63. Lem NW, Glick BR (1985) Biotechnological uses of cyanobacteria. Biotechnol Adv 3:195–208

    Article  PubMed  CAS  Google Scholar 

  64. Hatanaka Y, Kudo T, Miyataka M, Kobayashi O, Higashihara M, Hiyama K (1999) Asymmetric reduction of hydroxyacetone to propanediol in immobilized halotolerant microalga Dunaliella Parva. J Biosci Bioeng 88(3):281–286

    Article  PubMed  CAS  Google Scholar 

  65. Chen Y-C (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Cholrococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80

    Article  Google Scholar 

  66. Chen Y-C (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. J Appl Phycol 15:439–444

    Article  Google Scholar 

  67. Tripathi U, Ramachandra RS, Ravishankar GA (2002) Biotransformation of phenylpropanoid compounds to vanilla flavor metabolites in cultures of Haematococcus pluvialis. Process Biochem 38:419–426

    Article  CAS  Google Scholar 

  68. Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrogen Energy 37:151–161

    Article  CAS  Google Scholar 

  69. Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151

    Article  PubMed  CAS  Google Scholar 

  70. Jiménez-Pérez MV, Sánchez-Castillo P, Romera O, Fernández-Moreno D, Pérez-Martínez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb Technol 34:392–398

    Article  CAS  Google Scholar 

  71. Trejo A, de-Bashan LE, Hartmann A, Hernandez J-P, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Botany 75:65–73

    Article  Google Scholar 

  72. Boyd A, Chakrabarty AM (1995) Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168

    Article  PubMed  CAS  Google Scholar 

  73. Jang LK, Nguyen D, Geesey GG (1995) Selectivity of alginate gel for Cu vs. Co. Water Res 29(1):307–313

    Article  CAS  Google Scholar 

  74. Ertesvåg H, Valla S (1998) Biosynthesis and applications of alginates. Polym Degrad Stab 59:85–91

    Article  Google Scholar 

  75. Sakai S, Ono T, Ijima H, Kaeakami K (2004) Behavior of enclosed sol- and gel-alginates in vivo. Biochem Eng J 22:19–24

    Article  CAS  Google Scholar 

  76. Hertzberg S, Kvittingen L, Anthonsen T, Skjåk-Bræk G (1992) Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: Application in lipase-catalysed reactions. Enzyme Microbiol Technol 14:42–47

    Article  CAS  Google Scholar 

  77. Pane L, Feletti M, Bertino C, Carli A (1998) Viability of the marine microalga Tetraselmis suecica grown free and immobilized in alginate beads. Aquaculture Int 6:411–420

    Article  Google Scholar 

  78. Garbayo I, Vigara AJ, Conchon V, Martins Dos Santos VAP, Vilchez C (2000) Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reindhartii cells. Process Biochem 36:459–466

    Article  CAS  Google Scholar 

  79. Metha SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37:261–271

    Article  Google Scholar 

  80. Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  81. Katircioğlu H, Aslim B, Türker AR, Atici T, Beyatli Y (2008) Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour Technol 99:4185–4191

    Article  PubMed  CAS  Google Scholar 

  82. Moreno-Garrido I, Lubián LM, Blasco J (2007) Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin). Environ Int 33:481–495

    Article  PubMed  CAS  Google Scholar 

  83. Poncelet D, Babak V, Dulieu C, Picot A (1999) A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloid Surface A: Physicochem Eng Aspects 155:171–176

    Article  CAS  Google Scholar 

  84. Hertzberg S, Jensen A (1989) Studies of alginate-immobilized marine microalgae. Botanica Marina 32:267–273

    Article  CAS  Google Scholar 

  85. Moreira SM, Guilhermino L, Ribeiro R (2006) An in situ bioassay with the microalga Phaeodactylum tricornutum for sediment-overlying water toxicity evaluations in estuaries. Environ Toxicol Chem 25(9):2272–2279

    Article  PubMed  CAS  Google Scholar 

  86. Moreira SM, Moreira-Santos M, Guilhermino L, Ribiero R (2006) Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enzyme Microb Technol 38:135–141

    Article  CAS  Google Scholar 

  87. Faafeng BA, van Donk E, Källqvist T (1994) In situ measurement of algal growth potential in aquatic ecosystems by immobilized algae. J Appl Phycol 6:301–308

    Article  Google Scholar 

  88. Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized microalgae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  89. Aksu Z, Bülbül G (1999) Detgermination of effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida cells. Enzyme Microb Technol 25:344–348

    Article  CAS  Google Scholar 

  90. Widerøe H, Danielsen S (2001) Evaluation of the use of Sr2+ in alginate immobilization of cells. Naturwissenschaften 88:224–228

    Article  PubMed  CAS  Google Scholar 

  91. Vílchez C, Garbayo I, Markvicheva E, Galván F, León R (2001) Studies on the suitability of alginate-entrapped Chlamydomonas reindhartii cells for sustaining nitrate consumption processes. Bioresour Technol 78:55–61

    Article  PubMed  Google Scholar 

  92. Cheong SW, Park JK, Kim BS, Chang HN (1993) Microencapsulation of yeast cells in the calcium alginate membrane. Biotechnol Techniq 7(12):879–884

    Article  CAS  Google Scholar 

  93. Espinosa EP, Barillé L, Bassem A (2007) Use of encapsulated live microalgae to investigate pre-ingestive selection in the oyster Crassostrea gigas. J Exp Marine Biol Ecol 343:118–126

    Article  Google Scholar 

  94. Chan LW, Lee HY, Heng PWS (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242:259–262

    Article  PubMed  CAS  Google Scholar 

  95. Rangasayatorn N, Pokethitiyook P, Upatahm ES, Lanza GR (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ Int 30:57–63

    Article  CAS  Google Scholar 

  96. Vilchez C, Vega JM (1995) Nitrite uptake by immobilized Chlamydomonas reinhardtii cells growing in airlift reactors. Enzyme Microb Technol 17:386–390

    Article  CAS  Google Scholar 

  97. Aksu Z, Kutsal T (1998) Determination of kinetic parameters in the biosorption of copper(II) on Cladophora sp., in a packed bed column reactor. Process Biochem 33(1):7–13

    Article  CAS  Google Scholar 

  98. Moreno-Garrido I, Codd GA, Gadd GM, Lubián LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (EUSTIGMATOPHYCEAE). Ciencias Marinas 28(1):107–119

    CAS  Google Scholar 

  99. Twist H, Edwards AC, Codd GA (1998) Algal growth responses to waters of contrasting tributaries of the River Dee, North-East Scotland. Water Res 32(8):2471–2479

    Article  CAS  Google Scholar 

  100. Twist H, Edwards AC, Codd GA (1997) A novel In situ biomonitor using alginate immobilised algae (Scenedesmus subspicatus) for the assessment of eutrophycation in flowing surface waters. Waterer Res 31(8):2066–2067

    Article  CAS  Google Scholar 

  101. Kosourov SN, Seibat M (2008) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  Google Scholar 

  102. Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors Accumulators B 51:256–260

    Article  CAS  Google Scholar 

  103. Shitanda I, Takada K, Sakai Y, Tatsuma T (2005) Compact amperometric algal biosensors for the evaluation of water toxicity. Anal Chim Acta 530:191–197

    Article  CAS  Google Scholar 

  104. Singh R, Prasad BB (2000) Trace metal analysis: selective sample (copper II) enrichment on an AlgaSORB column. Process Biochem 35:897–905

    Article  CAS  Google Scholar 

  105. Stark PC, Rayson GD (2000) Comparisons of metal-ion binding to immobilized biogenic materials in a flowing system. Adv Environ Res 4:113–122

    Article  Google Scholar 

  106. Godlewska-Żyłkiewicz B (2003) Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochimica Acta part B 58:1531–1540

    Article  CAS  Google Scholar 

  107. Naessens M, Tran-Minh C (1998) Whole-cell biosensor for determination of volatile organic compounds in the form of aerosols. Anal Chim Acta 364:153–158

    Article  CAS  Google Scholar 

  108. Naessens M, Tran-Minh C (1999) Biosensor using immobilized Chlorella microalgae for determination of volatile organic compounds. Sensord and Actuators B 59:100–102

    Article  CAS  Google Scholar 

  109. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensors using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185

    Article  PubMed  CAS  Google Scholar 

  110. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209

    Article  PubMed  CAS  Google Scholar 

  111. Nowak ECM, Podola B, Melkonian M (2005) The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist 156:239–251

    Article  Google Scholar 

  112. Podola B, Nowack ECM, Melkonian M (2004) The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens Bioelectron 19:1253–1260

    Article  PubMed  CAS  Google Scholar 

  113. Sanders CA, Rodríguez M Jr, Greenbaun E (2001) Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosens Bioelectron 16:439–446

    Article  PubMed  CAS  Google Scholar 

  114. Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463

    Article  PubMed  CAS  Google Scholar 

  115. Vandamme D, Foubert I, Fraeye I, Meeschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    Article  PubMed  CAS  Google Scholar 

  116. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  PubMed  CAS  Google Scholar 

  117. Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30(5):1023–1030

    Article  PubMed  CAS  Google Scholar 

  118. Van Toan N (2009) Production of chitin and chitosan from partially autolyzed shrimp shell. The Open Biomat J 1:21–24

    Article  CAS  Google Scholar 

  119. Cheng Y-S, Zheng Y, Labavitch JM, Van der Gheynst JS (2011) The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochem 46:1927–1933

    Article  CAS  Google Scholar 

  120. Morales J, de la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacultural Eng 4:257–270

    Article  Google Scholar 

  121. Bilanovic D, Shelef G, Sukenik A (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76

    Article  CAS  Google Scholar 

  122. Kaya VM, Picard G (1996) Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresour Technol 56:147–155

    Article  CAS  Google Scholar 

  123. Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and Sea waters. Biomass 15:187–199

    Article  Google Scholar 

  124. Lee AK, Lewis DM, Ashman PJ (2010) Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res Design 88:988–996

    Article  CAS  Google Scholar 

  125. Uduman N, Qi Y, Danquah MK, Hoadley AFA (2010) Marine microalgae flocculation and focused beam reflectance measurement. Chem Eng J 162:935–940

    Article  CAS  Google Scholar 

  126. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Moreno-Garrido, I. (2013). Microalgal Immobilization Methods. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics