Skip to main content

Exosomes as a Potential Tool for a Specific Delivery of Functional Molecules

  • Protocol
  • First Online:
Book cover Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

Extracellular membrane vesicles derived from the endosomal compartments and released by the fusion of the multivesicular bodies with the cell membrane are referred as exosomes (Exo) [Van Niel et al., J Biochem 140:13–21, 2006]. They function as mediators of intercellular communication and are employed by the organism in the regulation of systemic and local processes. Meantime, Exo are recognized as an indispensable entity of physiological fluids [Caby et al., Int Immunol 17:879–887, 2005; Lasser et al., J Transl Med 9:9, 2011; Lasser et al., Am J Rhinol Allergy 25:89–93, 2011]. Exo and other types of extracellular vesicles, e.g., exosome-like vesicles [van Niel et al., Gastroenterology 121:337–349, 2001] and microvesicles (MV) [Daveloose et al., Thromb Res 22:195–201, 1981], contain multiple functional molecules including lipids [Vidal et al., J Cell Physiol 140:455–462, 1989]; proteins [Simpson et al., Expert Rev Proteomics 6:267–283, 2009]; mRNA [Valadi et al., Nat Cell Biol 9:654–659, 2007]; DNA [Waldenstrom et al., PLoS One 7:e34653, 2012]; noncoding RNA, e.g., miRNA [Simpson et al., Expert Rev Proteomics 6:267–283, 2009]; and retrotransposon elements [Balaj et al., Nat Commun 2:180, 2011]. Assessment of the biological functions of Exo showed that they deliver specifically their cargo from the donor to recipient cells. Albeit the molecular mechanisms of this process are not fully understood, approaches for the application of Exo and MV as a tool for a cell-specific delivery of signalling molecules were successfully tested in in vitro and in vivo models [Maguire et al., Mol Ther 20:960–971, 2012]. Ovarian cancer cells release Exo, which bind stroma cells as well as donor cancer cells [Escrevente et al., BMC Cancer 11:108, 2011].

Here we describe an experimental approach for the assessment of Exo interaction and uptake by target cells. Methods for the isolation and purification of Exo from cell culture supernatants are included. To allow visualization of vesicle uptake, labelling of Exo with different fluorescent dyes, such as CFSE, PKH, DHPE, and DiOC18, is presented. Finally, we explain qualitative and quantitative analysis of Exo uptake by immunofluorescence and flow cytometry, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    Article  PubMed  Google Scholar 

  2. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  PubMed  CAS  Google Scholar 

  3. Lasser C et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9

    Article  PubMed  Google Scholar 

  4. Lasser C et al (2011) RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 25:89–93

    Article  PubMed  Google Scholar 

  5. van Niel G et al (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–349

    Article  PubMed  Google Scholar 

  6. Daveloose D et al (1981) Inhibitory effect of microvesicles collected from stored blood on platelet aggregation. Thromb Res 22:195–201

    Article  PubMed  CAS  Google Scholar 

  7. Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A (1989) Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. J Cell Physiol 140:455–462

    Article  PubMed  CAS  Google Scholar 

  8. Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  PubMed  CAS  Google Scholar 

  9. Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  10. Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653

    Article  PubMed  Google Scholar 

  11. Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  PubMed  Google Scholar 

  12. Maguire CA et al (2012) Microvesicle-associated AAV Vector as a Novel Gene Delivery System. Mol Ther 20:960–971

    Article  PubMed  CAS  Google Scholar 

  13. Escrevente C, Keller S, Altevogt P, Costa J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11:108

    Article  PubMed  CAS  Google Scholar 

  14. Rak J, Yu JL, Klement G, Kerbel RS (2000) Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 5:24–33

    Article  PubMed  CAS  Google Scholar 

  15. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  Google Scholar 

  16. Valenti R et al (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    Article  PubMed  CAS  Google Scholar 

  17. Van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    Article  PubMed  Google Scholar 

  18. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    Article  PubMed  CAS  Google Scholar 

  19. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    Article  PubMed  CAS  Google Scholar 

  20. van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    Article  PubMed  Google Scholar 

  21. Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23:6

    Article  Google Scholar 

  22. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668

    Article  PubMed  CAS  Google Scholar 

  23. Nazarenko I et al (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    Article  PubMed  CAS  Google Scholar 

  24. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    Article  PubMed  CAS  Google Scholar 

  25. Fevrier B, Vilette D, Laude H, Raposo G (2005) Exosomes: a bubble ride for prions? Traffic 6:10–17

    Article  PubMed  CAS  Google Scholar 

  26. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108

    Article  PubMed  CAS  Google Scholar 

  27. Rana S, Claas C, Kretz CC, Nazarenko I, Zoeller M (2011) Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: Impact on tumor cell motility. Int J Biochem Cell Biol 43:106–119

    Article  PubMed  CAS  Google Scholar 

  28. Runz S et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107:563–571

    Article  PubMed  CAS  Google Scholar 

  29. Taylor DD, Gercel-Taylor C, Parker LP (2009) Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 115:112–120

    Article  PubMed  CAS  Google Scholar 

  30. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    Article  PubMed  CAS  Google Scholar 

  31. Li J et al (2009) Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9:244

    Article  PubMed  Google Scholar 

  32. Cho JA et al (2011) Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol 123:379–386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Nazarenko, I., Rupp, AK., Altevogt, P. (2013). Exosomes as a Potential Tool for a Specific Delivery of Functional Molecules. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_37

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics