Skip to main content

In Vitro Model of Spontaneous Mouse OSE Transformation

  • Protocol
  • First Online:
Ovarian Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1049))

Abstract

An in vitro syngeneic model of neoplastic progression of murine ovarian surface epithelial (MOSE) cells represents a valid and significant model that allows for investigations into early mechanisms that impact tumorigenesis. Importantly, MOSE cells representing different stages of neoplastic transformation can be implanted back into immunocompetent mice to investigate host microenvironmental interactions that impact peritoneal dissemination and suppress immune surveillance mechanisms. Here we describe the isolation of MOSE cells that undergo spontaneous transformation upon repeated passage in cell culture. We also provide detailed in vitro assays for 3-D culturing of MOSE cells for characterizing anchorage-independent and invasive growth properties of these cells. Cell lines derived from this model have provided numerous insights into genetic, epigenetic, and biomechanical changes associated with neoplastic progression, as well as the immune responses associated with peritoneal dissemination of ovarian cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N et al (2011) SEER cancer statistics review, 1975–2008, National Cancer Institute, Bethesda, MD, http://seer.cancer.gov/csr/1975_2008/

  2. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  3. Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    Article  PubMed  CAS  Google Scholar 

  4. Kuk C et al (2009) Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol Cell Proteomics 8:661–669

    Article  PubMed  CAS  Google Scholar 

  5. Shield K et al (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113:143–148

    Article  PubMed  Google Scholar 

  6. Steinberg JJ, Demopoulos RI, Bigelow B (1986) The evaluation of the omentum in ovarian cancer. Gynecol Oncol 24:327–330

    Article  PubMed  CAS  Google Scholar 

  7. Nishida T et al (1986) Histologic origin of rat ovarian cancer induced by direct application of 7,12-dimethylbenz(a)anthracene. Nihon Sanka Fujinka Gakkai Zasshi 38:570–574

    PubMed  CAS  Google Scholar 

  8. Chen KM et al (2012) Induction of ovarian cancer and DNA adducts by dibenzo[a, l]pyrene in the mouse. Chem Res Toxicol 25:374–380

    Article  PubMed  CAS  Google Scholar 

  9. Flesken-Nikitin A et al (2003) Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 63:3459–3463

    PubMed  CAS  Google Scholar 

  10. Connolly DC et al (2003) Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 63:1389–1397

    PubMed  CAS  Google Scholar 

  11. Kim J et al (2012) High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci USA 109:3921–3926

    Article  PubMed  CAS  Google Scholar 

  12. Gregoire L et al (2001) Spontaneous malignant transformation of human ovarian surface epithelial cells in vitro. Clin Cancer Res 7:4280–4287

    PubMed  CAS  Google Scholar 

  13. Maines-Bandiera SL, Kruk PA, Auersperg N (1992) Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am J Obstet Gynecol 16:729–735

    Article  Google Scholar 

  14. Nitta M et al (2001) Characterization and tumorigenicity of human ovarian surface epithelial cells immortalized by SV40 large T antigen. Gynecol Oncol 81:10–17

    Article  PubMed  CAS  Google Scholar 

  15. Leung EH, Leung PC, Auersperg N (2001) Differentiation and growth potential of human ovarian surface epithelial cells expressing temperature-sensitive SV40 T antigen. In Vitro Cell Dev Biol Anim 37:515–521

    Article  PubMed  CAS  Google Scholar 

  16. Liu J et al (2004) A genetically defined model for human ovarian cancer. Cancer Res 64:1655–1663

    Article  PubMed  CAS  Google Scholar 

  17. Adams AT, Auersperg N (1981) Transformation of cultured rat ovarian surface epithelial cells by Kirsten murine sarcoma virus. Cancer Res 41:2063–2072

    PubMed  CAS  Google Scholar 

  18. Bono Y et al (2012) Creation of immortalised epithelial cells from ovarian endometrioma. Br J Cancer 106:1205–1213

    Article  PubMed  CAS  Google Scholar 

  19. Motohara T et al (2011) Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis 32:1597–1606

    Article  PubMed  CAS  Google Scholar 

  20. Guo X et al (2011) Overexpression of the beta subunit of human chorionic gonadotropin promotes the transformation of human ovarian epithelial cells and ovarian tumorigenesis. Am J Pathol 179:1385–1393

    Article  PubMed  CAS  Google Scholar 

  21. Roberts PC et al (2005) Sequential molecular and cellular events during neoplastic progression: a mouse syngeneic ovarian cancer model. Neoplasia 7:944–956

    Article  PubMed  CAS  Google Scholar 

  22. Creekmore AL et al (2011) Changes in gene expression and cellular architecture in an ovarian cancer progression model. PLoS One 6:e17676

    Article  PubMed  CAS  Google Scholar 

  23. Lee JM et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  Google Scholar 

  24. Ketene AN et al (2012) The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomedicine 8:93–102

    Article  PubMed  CAS  Google Scholar 

  25. Ketene AN et al (2012) Actin filaments play primary role for structural integrity and viscoelastic response in cells. Integr Biol 4:540–549. doi 10.1039/C2IB00168C

    Google Scholar 

  26. Roby KF et al (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591

    Article  PubMed  CAS  Google Scholar 

  27. Bak SP et al (2008) Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol Immunol 46:258–268

    Article  PubMed  CAS  Google Scholar 

  28. Hagemann T et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    Article  PubMed  CAS  Google Scholar 

  29. Hagemann T et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176:5023–5032

    PubMed  CAS  Google Scholar 

  30. Huarte E et al (2008) Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res 68:7684–7691

    Article  PubMed  CAS  Google Scholar 

  31. Tomihara K et al (2010) Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells. J Immunol 184:6151–6160

    Article  PubMed  CAS  Google Scholar 

  32. Zhang L et al (2002) Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol 161:2295–2309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant CA118846 (E.M.S., P.C.R.) and The Fralin Research Institute Initiative for Cancer Biology at Virginia Tech (P.C.R., E.M.S.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Roberts, P.C., Schmelz, E.M. (2013). In Vitro Model of Spontaneous Mouse OSE Transformation. In: Malek, A., Tchernitsa, O. (eds) Ovarian Cancer. Methods in Molecular Biology, vol 1049. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-547-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-547-7_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-546-0

  • Online ISBN: 978-1-62703-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics